[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Agriculture Parcel Boundary Detection from Remotely Sensed Images

  • Conference paper
  • First Online:
Proceedings of 3rd International Conference on Computer Vision and Image Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1022))

Abstract

The object-based image analysis (OBIA) is extensively used nowadays for classification of high-resolution satellite images (HRSI). In OBIA, the analysis is based on a group of pixels known as objects. It differs from the traditional pixels-based methodology, where individual pixels are analyzed. In OBIA, the image analysis consists of image segmentation, object attribution, and classification. The segmentation process thus identifies a group of pixels and are known as objects. These objects are taken for further analysis. Thus segmentation is an important step in OBIA. In order to find out the boundary of agriculture parcels, a two-step process is followed. First, the segmentation of the images is done using the statistical region merging (SRM) technique. Then the boundary information and center of the segmentation are found out using MATLAB. The best fit segment was found out using trial and errors. The extracted boundary information is very encouraging and it matches the parcel boundaries recorded in revenue registers. The completeness and precision analysis of the plots are also quite satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baatz, M., Schäpe, A.: Multiresolution segmentation—an optimisation approach for high quality multi-scale image segmentation. AGIT Symposium, Salzburg (2000)

    Google Scholar 

  2. Babawuro, U., Beiji, Z.: Satellite imagery cadastral features extractions using image processing algorithms: a viable option for cadastral science. Int J Comput Sci Issues (IJCSI) 9(4), 30 (2012)

    Google Scholar 

  3. Blaschke, T.: Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65, 2–16 (2010)

    Article  Google Scholar 

  4. Blaschke, T., Strobl, J.: What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. Zeitschrift fu¨r Geoinformations systeme 6, 12–17 (2001)

    Google Scholar 

  5. Castilla, G., Hay, G.J.: Image-objects and Geographic Objects. In: Blaschke, T., Lang, S., Hay, G. (eds.) Object-Based Image Analysis, pp. 91–110. Springer, Heidelberg, Berlin, New York (2008)

    Chapter  Google Scholar 

  6. Dey, V., Zhang, Y., Zhongm, M.: A review of image segmentation techniques with remote sensing perspective. In: ISPRS, Vienna, Austria, vol. XXXVIII, July 2010

    Google Scholar 

  7. eCognition User and Reference Manual

    Google Scholar 

  8. Fockelmann, R.: Agricultural parcel detection with Definiens eCognition. Earth observation Case Study, GAF, Germany (2001)

    Google Scholar 

  9. Hay, G.J., Castilla, G.: Object-based image analysis: strength, weakness, opportunities, and threats (SWOT). In: 1st International Conference on Object-Based Image Analysis (OBIA 2006), Salzburg, Austria, 4–5 July 2006

    Google Scholar 

  10. Haitao, L., Haiyan, G., Yanshun, H., Jinghui, Y.: An efficient multiscale SRMMHR (Statistical Region Merging and Minimum Heterogeneity Rule) segmentation method for high-resolution remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2(2) (2009)

    Google Scholar 

  11. Jung, R.W.: Deriving GIS-ready thematic mapping information from remotely sensed maps using Object-Oriented Image Analysis Techniques. In: ASPRS/MAPPS Conference, San Antonia, Texas (2009)

    Google Scholar 

  12. Marpu, P.R., Neubert, M., Herold, H., Niemeyer, I.: Enhanced evaluation of image segmentation results. J. Spat. Sci. 55(1), 55–68 (2010)

    Article  Google Scholar 

  13. Navulur, K.: Multispectral Image Analysis Using the Object-Oriented Paradigm. CRC Press (2007)

    Google Scholar 

  14. Nock, R., Nielsen, F.: Statistical region merging. IEEE Trans. Pattern Anal. Mach. Intell. 26(11) (2004)

    Google Scholar 

  15. Singh, P.P., Garg, R.D.: A Hybrid approach for information extraction from high resolution satellite imagery. Int. J. Image Graph. 13(2), 1340007(1–16) (2013)

    Google Scholar 

  16. Singh, P.P., Garg, R.D.: Information extraction from high resolution satellite imagery using integration technique. In: Intelligent Interactive Technologies and Multi-media, CCIS, vol. 276, pp. 262–271 (2013)

    Google Scholar 

  17. Singh, P.P., Garg, R.D.: Land use and land cover classification using satellite imagery: a hybrid classifier and neural network approach. In: Proceedings of International Conference on Advances in Modeling, Optimization and Computing, IIT Roorkee, pp. 753–762 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh Khadanga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khadanga, G., Jain, K. (2020). Agriculture Parcel Boundary Detection from Remotely Sensed Images. In: Chaudhuri, B., Nakagawa, M., Khanna, P., Kumar, S. (eds) Proceedings of 3rd International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 1022. Springer, Singapore. https://doi.org/10.1007/978-981-32-9088-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9088-4_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9087-7

  • Online ISBN: 978-981-32-9088-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics