[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Time-Varying Formation Control Under Switching Interaction Topologies Theories and Applications

  • Reference work entry
  • First Online:
Handbook of Real-Time Computing
  • 1688 Accesses

Abstract

Distributed control is one typical form of real-time control, and the unmanned aerial vehicle (UAV) swarm system belongs to the real-time systems. This chapter is focused on designing distributed time-varying formation control protocols for swarm systems with switching interaction topologies. A distributed formation control protocol is firstly constructed using neighboring relative information. Convergence conditions of the constructed protocols on the high-order linear time-invariant swarm systems are proposed together with the formation feasibility conditions. An algorithm to design the distributed time-varying formation control protocol under switching interaction topologies is presented. Moreover, the proposed distributed time-varying formation control protocol is applied to deal with the time-varying formation control problems for the UAV swarm system. A formation control platform consisting of four quadrotor UAVs is introduced. Finally, both numerical and experimental results are presented to demonstrate the effectiveness of the designed distributed time-varying formation control protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 656.33
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 656.33
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A. Abdessameud, A. Tayebi, Formation control of VTOL unmanned aerial vehicles with communication delays. Automatica 47(11), 2383–2394 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • H. Bai, J.T. Wen, Cooperative load transport: a formation-control perspective. IEEE Trans. Robot. 26(4), 742–750 (2010)

    Article  Google Scholar 

  • T. Balch, R.C. Arkin, Behavior-based formation control for multi robot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  • I. Bayezit, B. Fidan, Distributed cohesive motion control of flight vehicle formations. IEEE Trans. Ind. Electron. 60(12), 5763–5772 (2013)

    Article  Google Scholar 

  • R.W. Beard, J. Lawton, F.Y. Hadaegh, A coordination architecture for spacecraft formation control. IEEE Trans. Control Syst. Technol. 9(6), 777–790 (2001)

    Article  Google Scholar 

  • R.G. Brown, P.Y.C. Hwang, Introduction to Random Signals and Applied Kalman Filtering (Wiley, New York, 1996)

    MATH  Google Scholar 

  • F. Chen, Z.Q. Chen, Z.X. Liu, L.Y. Xiang, Z.Z. Yuan, Decentralized formation control of mobile agents: a unified framework. Physica A 387(19–20), 4917–4926 (2008)

    Article  Google Scholar 

  • J.P. Desai, J. Ostrowski, V. Kumar, Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)

    Article  Google Scholar 

  • X.W. Dong, J.X. Xi, Z.Y. Shi, Y.S. Zhong, Practical consensus for high-order swarm systems with uncertainties, time delays and external disturbances. Int. J. Syst. Sci. 44(10), 1843–1856 (2013)

    Article  MATH  Google Scholar 

  • X.W. Dong, B.C. Yu, Z.Y. Shi, Y.S. Zhong, Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–348 (2015)

    Article  Google Scholar 

  • X.W. Dong, Z.Y. Shi, G. Lu, Y.S. Zhong, Time-varying formation control for high-order linear swarm systems with switching interaction topologies, IET Contr. Theory Appl. 8(18), 2162-2170 (2014)

    Article  MathSciNet  Google Scholar 

  • X.W. Dong, Y. Zhou, Z. Ren, Y.S. Zhong, Time-varying formation control for unmanned aerial vehicles with switching interaction topologies, Control Eng. Practice 46, 26-36 (2016)

    Article  Google Scholar 

  • M. Euston, P. Coote, R. Mahony, K. Jonghyuk, T. Hamel, A complementary filter for attitude estimation of a fixed-wing UAV, in Proceedings of IEEE/RSJ International Conference Intelligent Robots and Systems, 2008, pp. 340–345

    Google Scholar 

  • J.A. Fax, R.M. Murry, Information flow and cooperative control of vehicle formations. IEEE Trans. Automat. Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • C. Godsil, G. Royal, Algebraic Graph Theory (Springer, New York, 2001)

    Book  Google Scholar 

  • J. Han, Y. Xu, L. Di, Y.Q. Chen, Low-cost multi-UAV technologies for contour mapping of nuclear radiation field. J. Intell. Robot. Syst. 70(1–4), 401–410 (2013)

    Article  Google Scholar 

  • T. Kailath, Linear Systems (Englewood Cliffs, Prentice-Hall, 1980)

    MATH  Google Scholar 

  • A. Karimoddini, H. Lin, B. Chen, T.H. Lee, Hybrid three-dimensional formation control for unmanned helicopters. Automatica 49(2), 424–433 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Kopfstedt, M. Mukai, M. Fujita, C. Ament, Control of formations of UAVs for surveillance and reconnaissance missions, in Proceedings 17th IFAC World Congress, 2008, pp. 6–11

    Google Scholar 

  • G. Lafferriere, A. Williams, J. Caughman, J.J.P. Veerman, Decentralized control of vehicle formations. Syst. Control Lett. 54(9), 899–910 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • M.A. Lewis, K.H. Tan, High precision formation control of mobile robots using virtual structures. Auton. Robot. 4(4), 387–403 (1997)

    Article  Google Scholar 

  • Z.K. Li, Z.S. Duan, G.R. Chen, L. Huang, Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. I-Regul. Pap. 57(1), 213–224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Lin, Y.M. Jia, Average consensus in networks of multi-agents with both switching topology and coupling time-delay. Physica A 387(1), 303–313 (2008)

    Article  Google Scholar 

  • C.L. Liu, Y.P. Tian, Formation control of multi-agent systems with heterogeneous communication delays. Int. J. Syst. Sci. 40(6), 627–636 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • C.Q. Ma, J.F. Zhang, Necessary and sufficient conditions for consensusability of linear multi-agent systems. IEEE Trans. Automat. Control 55(5), 1263–1268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • C.Q. Ma, J.F. Zhang, On formability of linear continuous-time multi-agent systems. J. Syst. Sci. Complex. 25(1), 13–29 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • W. Ni, D.Z. Cheng, Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst. Control Lett. 59(3–4), 209–217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • N. Nigam, S. Bieniawski, I. Kroo, J. Vian, Control of multiple UAVs for persistent surveillance: algorithm and flight test results. IEEE Trans. Control Syst. Technol. 20(5), 1236–1251 (2012)

    Article  Google Scholar 

  • R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • D.J. Pack, P. DeLima, G.J. Toussaint, G. York, Cooperative control of UAVs for localization of intermittently emitting mobile targets. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 39(4), 959–970 (2009)

    Article  Google Scholar 

  • M. Porfiri, D.G. Roberson, D.J. Stilwell, Tracking and formation control of multiple autonomous agents: a two-level consensus approach. Automatica 43(8), 1318–1328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • W. Ren, Consensus strategies for cooperative control of vehicle formations. IET Control Theory Appl. 1(2), 505–512 (2007)

    Article  Google Scholar 

  • W. Ren, R.W. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Automat. Control 50(5), 655–661 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • W. Ren, N. Sorensen, Distributed coordination architecture for multi-robot formation control. Robot. Auton. Syst. 56(4), 324–333 (2008)

    Article  MATH  Google Scholar 

  • J. Seo, Y. Kim, S. Kim, A. Tsourdos, Consensus-based reconfigurable controller design for unmanned aerial vehicle formation flight. J. Aerosp. Eng. 226(7), 817–829 (2012)

    Google Scholar 

  • A. Sivakumar, C.K.Y. Tan, UAV swarm coordination using cooperative control for establishing a wireless communications backbone, in Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, 2010, pp. 1157–1164

    Google Scholar 

  • A. Tayebi, S. McGilvray, Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)

    Article  Google Scholar 

  • M. Turpin, N. Michael, V. Kumar, Decentralized formation control with variable shapes for aerial robots, in Proceedings of IEEE International Conference on Robotics and Automation, 2012, pp. 23–30

    Google Scholar 

  • J. Wang, M. Xin, Integrated optimal formation control of multiple unmanned aerial vehicles. IEEE Trans. Control Syst. Technol. 21(5), 1731–1744 (2013)

    Article  Google Scholar 

  • F. Xiao, L. Wang, Consensus problems for high-dimensional multi-agent systems. IET Control Theory Appl. 1(3), 830–837 (2007)

    Article  Google Scholar 

  • F. Xiao, L. Wang, J. Chen, Y.P. Gao, Finite-time formation control for multi-agent systems. Automatica 45(11), 2605–2611 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • G.M. Xie, L. Wang, Moving formation convergence of a group of mobile robots via decentralised information feedback. Int. J. Syst. Sci. 40(10), 1019–1027 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • K.Y. You, Z.K. Li, L.H. Xie, Consensus condition for linear multi-agent systems over randomly switching topologies. Automatica 49(10), 3125–3132 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zixuan Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dong, X., Hua, Y., Liang, Z., Li, Q., Ren, Z. (2022). Time-Varying Formation Control Under Switching Interaction Topologies Theories and Applications. In: Tian, YC., Levy, D.C. (eds) Handbook of Real-Time Computing. Springer, Singapore. https://doi.org/10.1007/978-981-287-251-7_30

Download citation

Publish with us

Policies and ethics