Abstract
Nowadays, increasing demands in monitoring, control, and connectivity often require quantifying variables that are not easy to measure. Soft metrology allows the development of routines that objectively quantify magnitudes that are subjective, difficult, or expensive to measure. (As shown in this chapter, soft metrology measures quantities related to human perception or those derived from abstract representations, and this is a new conceptual paradigm for comprehending metrology in contrast to the well-known basic measurements directly associated with the International System of Units (SI).) However, despite the increase in the use of soft metrology systems, it is a developing area, and there are still many issues related to ensuring the validity of results, as there are no standardized uncertainty estimation procedures for these kinds of applications, and there still are open discussions about the uncertainty propagation through blocks of measurement processes made up by computer routines. This book chapter discusses the state of conceptual development and the proposed general structure for soft metrology systems, focusing on challenges involved in uncertainty estimation. Lastly, some discussions and final considerations are presented where epistemic and aleatory uncertainties are contrasted and associated with the representation quality and learning capability for inference, regression, and/or forecasting models in the framework of measurement processes and soft metrology.
Similar content being viewed by others
References
Ali J, Lahoti P, Gummadi K P (2021) Accounting for model uncertainty in algorithmic discrimination. In: AIES 2021 – proceedings of the 2021 AAAI/ACM conference on AI, Ethics, and Society, pp 336–345. https://doi.org/10.1145/3461702.3462630
Amini MH, Arab M, Faramarz MG, Ghazikhani A, Gheib M (2021) Presenting a soft sensor for monitoring and controlling well health and pump performance using machine learning, statistical analysis, and Petri net modeling. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12643-0
Arpaia P, Blanco E, Girone M, Inglese V, Pezzetti M, Piccinelli F, Serio L (2015) Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics. Rev Sci Instrum 86(7):075004. https://doi.org/10.1063/1.4923466
Ayhan MSPB (2018) Test-time data augmentation for estimation of heteroscedastic aleatoric uncertainty in deep neural networks. In: 1st conference on medical imaging with deep learning, pp 1–9
Bardenet R, Doucet A, Holmes C (2017) On Markov chain Monte Carlo methods for tall data. J Mach Learn Res 17(1):1515–1557
Beiroti A, Hosseini SN, Norouzian D, Aghasadeghi MR (2023) Development of soft sensors for online biomass prediction in production of hepatitis B vaccine. Biointerface Res Appl Chem 13(2):1–13
Bergman M, Rosen B-G, Eriksson L, Lundeholm L (2020) Material & surface design methodology – the user study framework. Surf Topogr Metrol Prop 8(4):044001. https://doi.org/10.1088/2051-672X/ab915f
Bidar B, Khalilipour MM, Shahraki F, Sadeghi J (2018) A data-driven soft-sensor for monitoring ASTM-D86 of CDU side products using local instrumental variable (LIV) technique. J Taiwan Inst Chem Eng 84(2018):49–59. https://doi.org/10.1016/j.jtice.2018.01.009
Blundell C, Cornebise J, Kavukcuoglu K, Daan W (2015) Weight uncertainty in neural network. In: Bach F, Blei D (eds) Proceedings of the 32nd international conference on machine learning, vol 37, pp 1613–1622. PMLR
Campagna MM, Dinardo G, Fabbiano L, Vacca G (2015) Fluid flow measurements by means of vibration monitoring. Meas Sci Technol 26(11):115306. https://doi.org/10.1088/0957-0233/26/11/115306
Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16–28. https://doi.org/10.1016/J.COMPELECENG.2013.11.024
Chen J, Ngu Y (2023) A comparative study of different Kernel functions applied to LW-KPLS model for nonlinear processes. Biointerface Res Appl Chem 13(2):1–16
Cheung H, Braun JE (2016) A general method for calculating the uncertainty of virtual sensors for packaged air conditioners. Int J Refrig 63:225–236. https://doi.org/10.1016/j.ijrefrig.2015.06.022
Chien C-F, Hung W-T, Pan C-W, van Nguyen TH (2022) Decision-based virtual metrology for advanced process control to empower smart production and an empirical study for semiconductor manufacturing. Comput Ind Eng 169:108245. https://doi.org/10.1016/j.cie.2022.108245
Choi JE, Park H, Lee Y, Hong SJ (2022) Virtual metrology for etch profile in silicon trench etching with SF/O/Ar plasma. IEEE Trans Semicond Manuf 35(1):128–136. https://doi.org/10.1109/TSM.2021.3138918
Combalia M, Hueto F, Puig S, Malvehy J, Vilaplana V (2020) Uncertainty estimation in deep neural networks for dermoscopic image classification. In: 2020 IEEE/CVF conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 3211–3220. https://doi.org/10.1109/CVPRW50498.2020.00380
de Morais TCB, Rodrigues DR, de Carvalho Polari Souto UT, Lemos SG (2019) A simple voltammetric electronic tongue for the analysis of coffee adulterations. Food Chem 273:31–38. https://doi.org/10.1016/j.foodchem.2018.04.136
Delgado-Trejos E, Perera-Lluna A, VallverdÚ-Ferrer M, Caminal-Magrans P, Castellanos-DomÍnguez G (2009) Dimensionality reduction oriented toward the feature visualization for ischemia detection. IEEE Trans Inf Technol Biomed 13(4):590–598. https://doi.org/10.1109/TITB.2009.2016654
der Kiureghian A, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112. https://doi.org/10.1016/j.strusafe.2008.06.020
Dinardo G, Fabbiano L, Vacca G (2013) Fluid flow rate estimation using acceleration sensors. In: Proceedings of the international conference on sensing technology, ICST, Ldv, pp 221–225. https://doi.org/10.1109/ICSensT.2013.6727646
Dinardo G, Fabbiano L, Vacca G, Lay-Ekuakille A (2018) Vibrational signal processing for characterization of fluid flows in pipes. Meas J Int Meas Confed 113:196–204. https://doi.org/10.1016/j.measurement.2017.06.040
Evans RP, Blotter JD, Stephens AG (2004) Flow rate measurements using flow-induced pipe vibration. J Fluids Eng Trans ASME 126(2):280–285. https://doi.org/10.1115/1.1667882
Fabbiano L, Vacca G, Dinardo G (2020) Smart water grid: a smart methodology to detect leaks in water distribution networks. Meas J Int Meas Confed 151:107260. https://doi.org/10.1016/j.measurement.2019.107260
Fanton J-P (2019) A brief history of metrology: past, present, and future. Int J Metrol Qual Eng 10(5):8. https://doi.org/10.1051/ijmqe/2019005
Ferrari M, Bonzanini A, Arioli G, Poesio P (2017) Estimation of flow rates and parameters in two-phase stratified and slug flow by an ensemble kalman filter. In: 12th international conference on CFD in oil & gas, metallurgical and process industries, pp 171–177
Fung PL, Zaidan MA, Sillanpää S, Kousa A, Niemi JV, Timonen H, Kuula J, Saukko E, Luoma K, Petäjä T, Tarkoma S, Kulmala M, Hussein T (2020) Input-adaptive proxy for black carbon as a virtual sensor. Sensors (Switzerland) 20(1). https://doi.org/10.3390/s20010182
Gal Y, Ghahramani Z (2016) Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the 33 Rd international conference on machine learning, vol 48, pp 1050–1059
Göksu H (2018) Flow measurement by wavelet packet analysis of sound emissions. Meas Control (United Kingdom) 51(3–4):104–112. https://doi.org/10.1177/0020294018768340
Guo F, Xie R, Huang B (2020) A deep learning just-in-time modeling approach for soft sensor based on variational autoencoder. Chemom Intell Lab Syst 197:103922. https://doi.org/10.1016/j.chemolab.2019.103922
Haq AU, Djurdjanovic D (2016) Virtual metrology concept for predicting defect levels in semiconductor manufacturing. Procedia CIRP 57:580–584. https://doi.org/10.1016/j.procir.2016.11.100
Hernandez-Lobato JM, Adams R (2015) Probabilistic backpropagation for scalable learning of Bayesian neural networks. In: Proceedings of the 32nd international conference on machine
Hirai T, Kano M (2015) Adaptive virtual metrology design for semiconductor dry etching process through locally weighted partial least squares. IEEE Trans Semicond Manuf 28(2):137–144. https://doi.org/10.1109/TSM.2015.2409299
Hu L, Chen Y, Wang S, Jia L (2014) A nonintrusive and single-point infrastructure-mediated sensing approach for water-use activity recognition. In: Proceedings – 2013 IEEE international conference on high performance computing and communications, HPCC 2013 and 2013 IEEE international conference on embedded and ubiquitous computing, EUC 2013, pp 2120–2126. https://doi.org/10.1109/HPCC.and.EUC.2013.304
Hüllermeier E, Waegeman W (2021) Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach Learn 110(3):457–506. https://doi.org/10.1007/s10994-021-05946-3
Iacomussi P, Radis M, Rossi G (2016) Brightness and sparkle appearance of goniochromatic samples. In: IS and T international symposium on electronic imaging science and technology. https://doi.org/10.2352/issn.2470-1173.2016.9.mmrma-365
Inderaja B, Tarigan NB, Verdegem M, Keesman KJ (2022) Observability-based sensor selection in fish ponds: application to pond aquaculture in Indonesia. Aquac Eng 98(April):102258. https://doi.org/10.1016/j.aquaeng.2022.102258
Jacobs HE, Skibbe Y, Booysen MJ, Makwiza C (2015) Correlating sound and flow rate at a tap. Procedia Eng 119(1):864–873. https://doi.org/10.1016/j.proeng.2015.08.953
Jo HS, Park CW, An S, Aldalbahi A, El-Newehy M, Park SS, Yarin AL, Yoon SS (2022) Wearable multifunctional soft sensor and contactless 3D scanner using supersonically sprayed silver nanowires, carbon nanotubes, zinc oxide, and PEDOT:PSS. NPG Asia Mater 14(1). https://doi.org/10.1038/s41427-022-00370-y
Joint Committee for Guides in Metrology (JCGM) (2008) BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. Evaluation of measurement data – guide to the expression of uncertainty in measurement 100. https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6
Joint Committee for Guides in Metrology (JCGM) (2012) BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. International vocabulary of metrology – Basic and general concepts and associated terms (VIM) 200 (3rd edition). https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1
Junhwan C, Seokmin O, Joongmoo B (2022) Uncertainty estimation in AVO inversion using Bayesian dropout based deep learning. J Pet Sci Eng 208:109288. https://doi.org/10.1016/j.petrol.2021.109288
Kadlec P, Gabrys B, Strandt S (2009) Data-driven soft sensors in the process industry. Comput Chem Eng 33(4):795–814. https://doi.org/10.1016/j.compchemeng.2008.12.012
Kano M, Ogawa M (2010) The state of the art in chemical process control in Japan: good practice and questionnaire survey. J Process Control 20(9):969–982. https://doi.org/10.1016/j.jprocont.2010.06.013
Kendall A, Gal Y (2017) What uncertainties do we need in Bayesian deep learning for computer vision? In: 31st conference on neural information processing systems (NIPS 2017), 2017-December, pp 5575–5585
Khatibisepehr S, Huang B, Khare S (2013) Design of inferential sensors in the process industry: a review of Bayesian methods. J Process Control 23(10):1575–1596. https://doi.org/10.1016/j.jprocont.2013.05.007
Kim Y, Schmid T, Charbiwala ZM, Friedman J, Srivastava MB (2008). NAWMS: nonintrusive autonomous water monitoring system. In: SenSys’08 – proceedings of the 6th ACM conference on embedded networked sensor systems, January, pp 309–321. https://doi.org/10.1145/1460412.1460443
Kim M, Kang S, Lee J, Cho H, Cho S, Park JS (2017) Virtual metrology for copper-clad laminate manufacturing. Comput Ind Eng 109(2017):280–287. https://doi.org/10.1016/j.cie.2017.04.016
Kojis P, Šabanovič E, Skrickij V (2022) Deep neural network based data-driven virtual sensor in vehicle semi-active suspension real-time control. Transport 37(1):37–50. https://doi.org/10.3846/transport.2022.16919
Koo J, Yoon S, Kim J (2022) Virtual in situ calibration for operational backup virtual sensors in building energy systems. Energies 15(4). https://doi.org/10.3390/en15041394
Kullaa J (2017) Bayesian virtual sensing for full-field dynamic response estimation. Procedia Eng 199:2126–2131. https://doi.org/10.1016/j.proeng.2017.09.138
Kurmi VK, Patro BN, Subramanian VK, Namboodiri VP (2021). Do not forget to attend to uncertainty while mitigating catastrophic forgetting. In: 2021 IEEE winter conference on applications of computer vision (WACV), pp 736–745. https://doi.org/10.1109/WACV48630.2021.00078
Lakshminarayanan B, Pritzel A, Blundell C (2017) Simple and scalable predictive uncertainty estimation using deep ensembles. In: 31st conference on neural information processing systems, pp 1–12
Li C, Al-Dalali S, Wang Z, Xu B, Zhou H (2022a) Investigation of volatile flavor compounds and characterization of aroma-active compounds of water-boiled salted duck using GC–MS–O, GC–IMS, and E-nose. Food Chem 386:132728. https://doi.org/10.1016/j.foodchem.2022.132728
Li X, Yang Y, Zhu Y, Ben A, Qi J (2022b) A novel strategy for discriminating different cultivation and screening odor and taste flavor compounds in Xinhui tangerine peel using E-nose, E-tongue, and chemometrics. Food Chem 384:132519. https://doi.org/10.1016/j.foodchem.2022.132519
Liu Z, Han Z (2021) Efficient uncertainty estimation for monocular 3D object detection in autonomous driving. In: IEEE conference on intelligent transportation systems, proceedings, ITSC, 2021-Septe, pp 2711–2718. https://doi.org/10.1109/ITSC48978.2021.9564433
Louizos C, Max W (2016) Structured and efficient variational deep learning with matrix Gaussian posteriors. In: Balcan MF, Weinberger KQ (eds) Proceedings of the 33 rd international conference on machine learning, vol 48, pp 1708–1716. PMLR
Lozano-Torres B, Carmen Martínez-Bisbal M, Soto J, Juan Borrás M, Martínez-Máñez R, Escriche I (2022) Monofloral honey authentication by voltammetric electronic tongue: a comparison with 1H NMR spectroscopy. Food Chem 383:132460. https://doi.org/10.1016/j.foodchem.2022.132460
Lu B, Chiang L (2018) Semi-supervised online soft sensor maintenance experiences in the chemical industry. J Process Control 67(2018):23–34. https://doi.org/10.1016/j.jprocont.2017.03.013
Mahmodi K, Mostafaei M, Mirzaee-Ghaleh E (2022) Detecting the different blends of diesel and biodiesel fuels using electronic nose machine coupled ANN and RSM methods. Sustainable Energy Technol Assess 51:101914. https://doi.org/10.1016/j.seta.2021.101914
Maione C, Barbosa F, Barbosa RM (2019) Predicting the botanical and geographical origin of honey with multivariate data analysis and machine learning techniques: a review. Comput Electron Agric 157(2019):436–446. https://doi.org/10.1016/j.compag.2019.01.020
Medeiros KAR, Barbosa CRH, De Oliveira ÉC (2015) Nonintrusive method for measuring water flow in pipes. In: XXI IMEKO world congress “measurement in research and industry,” September, pp 44–50
Medeiros KAR, De Oliveira FLA, Barbosa CRH, De Oliveira EC (2016) Optimization of flow rate measurement using piezoelectric accelerometers: application in water industry. Meas J Int Meas Confed 91:576–581. https://doi.org/10.1016/j.measurement.2016.05.101
Mersha BW, Ma H (2022) Data-driven model for accommodation of faulty angle of attack sensor measurements in fixed winged aircraft. Eng Appl Artif Intell 111. https://doi.org/10.1016/j.engappai.2022.104799
Mesa-Cano KJ, Delgado-Trejos E (2021) Perspectives of smart manufacturing for industry 4.0 based on measurements derived from soft metrology. In: Gómez Marín CG, Cogollo Flórez JM (eds) Metodologías y herramientas para la organización eficiente – Proyectos de investigación realizados por estudiantes del Departamento de Calidad y Producción del Instituto Tecnológico Metropolitano. Fondo Editorial Pascual Bravo, pp 70–77
Mohd Ismail MI, Dziyauddin RA, Salleh NAA, Muhammad-Sukki F, Bani NA, Izhar MAM, Latiff LA (2019) A review of vibration detection methods using accelerometer sensors for water pipeline leakage. IEEE Access 7(c):51965–51981. https://doi.org/10.1109/ACCESS.2019.2896302
Mojto M, Ľubušký K, Fikar M, Paulen R (2021) Data-based design of inferential sensors for petrochemical industry. Comput Chem Eng 153:107437. https://doi.org/10.1016/j.compchemeng.2021.107437
Neal R (1996) Bayesian learning for neural networks. Springer. https://doi.org/10.1007/978-1-4612-0745-0
Nguyen, V.-L., Shaker, M. H., & Hüllermeier, E. (2022). How to measure uncertainty in uncertainty sampling for active learning. Mach Learn, 111(1), 89–122. https://doi.org/10.1007/s10994-021-06003-9
Oh YS, Kim JH, Xie Z, Cho S, Han H, Jeon SW, Park M, Namkoong M, Avila R, Song Z, Lee SU, Ko K, Lee J, Lee JS, Min WG, Lee BJ, Choi M, Chung HU, Kim J, … Rogers JA (2021) Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nat Commun 12(1):1–16. https://doi.org/10.1038/s41467-021-25324-w
Olivier A, Shields MD, Graham-Brady L (2021) Bayesian neural networks for uncertainty quantification in data-driven materials modeling. Comput Methods Appl Mech Eng 386. https://doi.org/10.1016/j.cma.2021.114079
Osman H-a, Shirmohammadi, S. (2021) Machine learning in measurement part 2: uncertainty quantification. IEEE Instrum Meas Mag 24(3):23–27. https://doi.org/10.1109/MIM.2021.9436102
Pirow NO, Louw TM, Booysen MJ (2018) Non-invasive estimation of domestic hot water usage with temperature and vibration sensors. Flow Meas Instrum 63(May):1–7. https://doi.org/10.1016/j.flowmeasinst.2018.07.003
Pointer MR (2003) Report to the National Measurement System Directorate, Department of Trade and Industry New Directions – soft metrology –requirements for support from mathematics, statistics and software
Popli K, Maries V, Afacan A, Liu Q, Prasad V (2018) Development of a vision-based online soft sensor for oil sands flotation using support vector regression and its application in the dynamic monitoring of bitumen extraction. Can J Chem Eng 96(7):1532–1540. https://doi.org/10.1002/cjce.23164
Posch K, Pilz J (2021) Correlated parameters to accurately measure uncertainty in deep neural networks. IEEE Trans Neural Netw Learn Syst 32(3):1037–1051. https://doi.org/10.1109/TNNLS.2020.2980004
Rajasekar L, Sharmila D (2019) Performance analysis of soft computing techniques for the automatic classification of fruits dataset. Soft Comput 23(8):2773–2788. https://doi.org/10.1007/s00500-019-03776-z
Redekop E, Chernyavskiy A (2021) Uncertainty-based method for improving poorly labeled segmentation datasets. In: 2021 IEEE 18th international symposium on biomedical imaging (ISBI), pp 1831–1835. https://doi.org/10.1109/ISBI48211.2021.9434065
Rossi L (2016) Objectifying the subjective: fundaments and applications of soft metrology. In: Cocco L (ed) New trends and developments in metrology. IntechOpen, pp 255–281. https://doi.org/10.5772/64123
Rothberg SJ, Allen MS, Castellini P, Di Maio D, Dirckx JJJ, Ewins DJ, Halkon BJ, Muyshondt P, Paone N, Ryan T, Steger H, Tomasini EP, Vanlanduit S, Vignola JF (2017) An international review of laser Doppler vibrometry: making light work of vibration measurement. Opt Lasers Eng 99(July):11–22. https://doi.org/10.1016/j.optlaseng.2016.10.023
Rovira J, Paredes-Ahumada JA, Barceló-Ordinas JM, Vidal JG, Reche C, Sola Y, Fung PL, Petäjä T, Hussein T, Viana M (2022) Non-linear models for black carbon exposure modelling using air pollution datasets. Environ Res 212(April):113269. https://doi.org/10.1016/j.envres.2022.113269
Ruiz-Gómez S, Gómez C, Poza J, Gutiérrez-Tobal G, Tola-Arribas M, Cano M, Hornero R (2018) Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment. Entropy 20(1):35. https://doi.org/10.3390/e20010035
Safari R, Tavassoli B (2011) Initial test and design of a soft sensor for flow estimation using vibration measurements. In: Proceedings – 2011 2nd international conference on control, instrumentation and automation, ICCIA 2011, 5, pp 809–814. https://doi.org/10.1109/ICCIAutom.2011.6356765
Salvo-Comino C, Martín-Bartolomé P, Pura JL, Perez-Gonzalez C, Martin-Pedrosa F, García-Cabezón C, Rodríguez-Méndez ML (2022) Improving the performance of a bioelectronic tongue using silver nanowires: application to milk analysis. Sensors Actuators B Chem 364:131877. https://doi.org/10.1016/j.snb.2022.131877
Shim J, Kang S (2022) Domain-adaptive active learning for cost-effective virtual metrology modeling. Comput Ind 135:103572. https://doi.org/10.1016/j.compind.2021.103572
Siddique T, Mahmud M, Keesee A, Ngwira C, Connor H (2022) A survey of uncertainty quantification in machine learning for space weather prediction. Geosciences 12(1):27. https://doi.org/10.3390/geosciences12010027
Sieberg PM, Schramm D (2022) Ensuring the reliability of virtual sensors based on artificial intelligence within vehicle dynamics control systems. Sensors 22(9):3513. https://doi.org/10.3390/s22093513
Slišković D, Grbić R, Hocenski Ž (2011) Methods for plant data-based process modeling in soft-sensor development. Automatika 52(4):306–318. https://doi.org/10.1080/00051144.2011.11828430
Song L, Wang G, Brambley MR (2013) Uncertainty analysis for a virtual flow meter using an air-handling unit chilled water valeve. PNNL 335–345. https://doi.org/10.1080/10789669.2013.774890
Souza FAA, Araújo R, Mendes J (2016) Review of soft sensor methods for regression applications. Chemom Intell Lab Syst 152(2016):69–79. https://doi.org/10.1016/j.chemolab.2015.12.011
Susto GA, Pampuri S, Schirru A, Beghi A, de Nicolao G (2015) Multi-step virtual metrology for semiconductor manufacturing: a multilevel and regularization methods-based approach. Comput Oper Res 53:328–337. https://doi.org/10.1016/j.cor.2014.05.008
Tagasovska N, Lopez-Paz D (2019) Single-model uncertainties for deep learning. In 33rd conference on neural information processing systems (NeurIPS 2019), pp 1–12
Terzi M, Masiero C, Beghi A, Maggipinto M, Susto GA (2017) Deep learning for virtual metrology: modeling with optical emission spectroscopy data. In: 2017 IEEE 3rd international forum on Research and Technologies for Society and Industry (RTSI), pp 1–6. https://doi.org/10.1109/RTSI.2017.8065905
Torabi N, Burak Gunay H, O’Brien W, Moromisato R (2021) Inverse model-based virtual sensors for detection of hard faults in air handling units. Energ Buildings 253:111493. https://doi.org/10.1016/j.enbuild.2021.111493
Vallejo M, Gallego CJ, Duque-Muñoz L, Delgado-Trejos E (2018) Neuromuscular disease detection by neural networks and fuzzy entropy on time-frequency analysis of electromyography signals. Expert Syst 35(4):e12274. https://doi.org/10.1111/exsy.12274
Vallejo M, de la Espriella C, Gómez-Santamaría J, Ramírez-Barrera AF, Delgado-Trejos E (2020) Soft metrology based on machine learning: a review. Meas Sci Technol 31(3):1–16. https://doi.org/10.1088/1361-6501/ab4b39
Vallejo M, Villa-Restrepo FL, Sánchez-González C, Delgado-Trejos E (2021) Metrological advantages of applying vibration analysis to pipelines: a review. Sci Tech 26(1):28–35. https://doi.org/10.22517/23447214.24351
Vemulapalli S, Venkata SK (2022) Soft sensor for an orifice flowmeter in presence of disturbances. Flow Meas Instrum 86(April):102178. https://doi.org/10.1016/j.flowmeasinst.2022.102178
Venkata SK, Navada BR (2018) Estimation of flow rate through analysis of pipe vibration. Acta Mech Autom 12(4):294–300. https://doi.org/10.2478/ama-2018-0045
Vishwakarma G, Sonpal A, Hachmann J (2021) Metrics for benchmarking and uncertainty quantification: quality, applicability, and best practices for machine learning in chemistry. Trends Chem 3(2):146–156. https://doi.org/10.1016/j.trechm.2020.12.004
Walker WE, Harremoës P, Rotmans J, van der Sluijs JP, van Asselt MBA, Janssen P, Krayer von Krauss MP (2003) Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support. Integr Assess 4(1):5–17. https://doi.org/10.1076/iaij.4.1.5.16466
Wang X, Liu H (2017) A new input variable selection method for soft sensor based on stacked auto-encoders. In: 2017 IEEE 56th annual conference on decision and control (CDC), pp 3324–3329. https://doi.org/10.1109/CDC.2017.8264147
Wang ZX, He QP, Wang J (2015) Comparison of variable selection methods for PLS-based soft sensor modeling. J Process Control 26(2015):56–72. https://doi.org/10.1016/j.jprocont.2015.01.003
Wang G, Li W, Aertsen M, Deprest J, Ourselin S, Vercauteren T (2019a) Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338:34–45. https://doi.org/10.1016/j.neucom.2019.01.103
Wang J, Zhu L, Zhang W, Wei Z (2019b) Application of the voltammetric electronic tongue based on nanocomposite modified electrodes for identifying rice wines of different geographical origins. Anal Chim Acta 1050:60–70. https://doi.org/10.1016/j.aca.2018.11.016
Wang J, Shao W, Zhang X, Qian J, Song Z, Peng Z (2021) Nonlinear variational Bayesian Student’s-t mixture regression and inferential sensor application with semisupervised data. J Process Control 105:141–159. https://doi.org/10.1016/j.jprocont.2021.07.013
Wang X, Su C, Wang N, Shi H (2022) Gray wolf optimizer with bubble - net predation for modeling fluidized catalytic cracking unit main fractionator. Sci Rep:1–10. https://doi.org/10.1038/s41598-022-10496-2
Wen L, Nie M, Chen P, Yu-na Z, Shen J, Wang C, Xiong Y, Yin K, Sun L (2022) Wearable multimode sensor with a seamless integrated structure for recognition of different joint motion states with the assistance of a deep learning algorithm. Microsyst Nanoeng 8(1). https://doi.org/10.1038/s41378-022-00358-2
Wentzell PD, Giglio C, Kompany-Zareh M (2021) Beyond principal components: a critical comparison of factor analysis methods for subspace modelling in chemistry. Anal Methods 13(37):4188–4219. https://doi.org/10.1039/d1ay01124c
Xuan W, Zheng L, Bunes BR, Crane N, Zhou F, Zang L (2022) Engineering solutions to breath tests based on an e-nose system for silicosis screening and early detection in miners. J Breath Res 16(3):036001. https://doi.org/10.1088/1752-7163/ac5f13
Yang F, Lv S, Liu Y, Bi S, Zhang Y (2022) Determination of umami compounds in edible fungi and evaluation of salty enhancement effect of Antler fungus enzymatic hydrolysate. Food Chem 387:132890. https://doi.org/10.1016/j.foodchem.2022.132890
Yuan X, Ye L, Bao L, Ge Z, Song Z (2015) Nonlinear feature extraction for soft sensor modeling based on weighted probabilistic PCA. Chemom Intell Lab Syst 147(2015):167–175. https://doi.org/10.1016/j.chemolab.2015.08.014
Yuan X, Huang B, Wang Y, Yang C, Gui W (2018) Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE. IEEE Trans Ind Inf 14(7):3235–3243. https://doi.org/10.1109/TII.2018.2809730
Zeng D, Spanos CJ (2009) Virtual metrology modeling for plasma etch operations. IEEE Trans Semicond Manuf 22(4):419–431. https://doi.org/10.1109/TSM.2009.2031750
Zhang L, Badar IH, Chen Q, Xia X, Liu Q, Kong B (2022) Changes in flavor, heterocyclic aromatic amines, and quality characteristics of roasted chicken drumsticks at different processing stages. Food Control 139:109104. https://doi.org/10.1016/j.foodcont.2022.109104
Zheng Z, Zhang C (2022) Electronic noses based on metal oxide semiconductor sensors for detecting crop diseases and insect pests. Comput Electron Agric 197:106988. https://doi.org/10.1016/j.compag.2022.106988
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2023 Springer Nature Singapore Pte Ltd.
About this entry
Cite this entry
Vallejo, M., Bahamón, N., Rossi, L., Delgado-Trejos, E. (2023). Soft Metrology. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-1550-5_67-1
Download citation
DOI: https://doi.org/10.1007/978-981-19-1550-5_67-1
Received:
Accepted:
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-1550-5
Online ISBN: 978-981-19-1550-5
eBook Packages: Living Reference EngineeringReference Module Computer Science and Engineering