[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

MLFF: Multiple Low-Level Features Fusion Model for Retinal Vessel Segmentation

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1566))

Abstract

Imaging is increasingly used for the diagnosis of retinal normality and the monitoring of retinal abnormalities. Many retinal vessel properties, such as small artery aneurysms, narrowing of incisions, etc., are related to systemic diseases. The morphology of retinal blood vessels themselves is related to cardiovascular disease and coronary artery disease in adults. The fundus image can intuitively reflect the retinal vessel lesions, and the computer-based image processing method can be used for auxiliary medical diagnosis. In this paper, a retinal vessel segmentation model, named as MLFF, is proposed to effectively extract and fuse multiple low-level features. Firstly, there are 25 low-level feature maps of fundus retinal vessel images that are analyzed and extracted. Then, the feature maps are fused by an AdaBoost classifier. Finally, the MLFF is trained and evaluated on public fundus images for vessel extraction dataset (DRIVE). The qualitative and quantitative experimental results show that our model can effectively detect the retinal vessels and outperforms other models including deep learning-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abràmoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3(3), 169–208 (2010)

    Article  Google Scholar 

  2. Fraz, M., et al.: Blood vessel segmentation methodologies in retinal images - a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)

    Article  Google Scholar 

  3. Waheed, Z., Usman Akram, M., Waheed, A., Khan, M.A., Shaukat, A., Ishaq, M.: Person identification using vascular and non-vascular retinal features. Comput. Electr. Eng. 53, 359–371 (2016)

    Article  Google Scholar 

  4. Zhao, Y., et al.: Retinal artery and vein classification via dominant sets clustering-based vascular topology estimation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 56–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_7

    Chapter  Google Scholar 

  5. Zheng, H., Chang, L., Wei, T., Qiu, X., Lin, P., Wang, Y.: Registering retinal vessel images from local to global via multiscale and multicycle features. In: IEEE Computer Vision and Pattern Recognition Workshops, pp. 50–57, June 2016

    Google Scholar 

  6. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  7. Srinidhi, C.L., Aparna, P., Rajan, J.: Recent advancements in retinal vessel segmentation. J. Med. Syst. 41(4), 1–22 (2017)

    Article  Google Scholar 

  8. Li, T., Bo, W., Hu, C., Kang, H., Liu, H., Wang, K., Fu, H.: Applications of deep learning in fundus images: a review. Med. Image Anal. 69, 101971 (2021)

    Google Scholar 

  9. Alyoubi, W.L., Shalash, W.M., Abulkhair, M.F.: Diabetic retinopathy detection through deep learning techniques: a review. Inform. Med. Unlocked 20, 100377 (2020)

    Google Scholar 

  10. Lupascu, C.A., Tegolo, D., Trucco, E.: FABC: retinal vessel segmentation using adaboost. IEEE Trans. Inf. Technol. Biomed. 14(5), 1267–1274 (2010)

    Article  Google Scholar 

  11. Yang, D., Liu, G., Ren, M., Xu, B., Wang, J.: A multi-scale feature fusion method based on u-net for retinal vessel segmentation. Entropy 22(8), 811 (2020). https://doi.org/10.3390/e22080811

  12. Wu, Y., Xia, Y., Song, Y., Zhang, Y., Cai, W.: NFN\(+\): a novel network followed network for retinal vessel segmentation. Neural Netw. 126, 153–162 (2020)

    Article  Google Scholar 

  13. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

    Article  Google Scholar 

  14. Fraz, M.M., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE. Trans. Biomed. Eng. 59(9), 2538–2548 (2012)

    Article  Google Scholar 

  15. Owen, C.G., et al.: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Inve. Ophtha. Vis. Sci. 50(5), 2004–2010 (2009)

    Article  Google Scholar 

  16. Shi, Z., Wang, T., Xie, F., Huang, Z., Zheng, X., Zhang, W.: MSU-net: a multi-scale u-net for retinal vessel segmentation. In: International Symposium on Artificial Intelligence in Medical Sciences, pp. 177–181 (2020)

    Google Scholar 

  17. Zhang, Y., Chen, Y., Zhang, K.: PCANet: pyramid context-aware network for retinal vessel segmentation. In: International Conference on Pattern Recognition, pp. 2073–2080 (2021)

    Google Scholar 

  18. Boudegga, H., Elloumi, Y., Akil, M., Bedoui, M.H., Kachouri, R., Abdallah, A.B.: Fast and efficient retinal blood vessel segmentation method based on deep learning network. Comput. Med. Imaging Graph. 90, 101902–101902 (2021)

    Article  Google Scholar 

  19. Zhao, H., Li, H., Cheng, L.: Improving retinal vessel segmentation with joint local loss by matting. Pattern Recognit. 98, 107068 (2020)

    Google Scholar 

  20. Ding, L., Bawany, M.H., Kuriyan, A.E., Ramchandran, R.S., Wykoff, C.C., Sharma, G.: A novel deep learning pipeline for retinal vessel detection in fluorescein angiography. IEEE Trans. Image Process. 29, 6561–6573 (2020)

    Article  Google Scholar 

  21. Ramos-Soto, O., et al.: An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering. Comput. Methods Programs Biomed. 201, 105949 (2021)

    Google Scholar 

  22. Freund, Y., Schapire, R.E.: A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 14(5), 771–780 (1999)

    Google Scholar 

  23. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  24. Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 19(1), 46–57 (2015)

    Article  Google Scholar 

  25. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)

    Article  Google Scholar 

  26. Li, Q., Feng, B., Xie, L., Liang, P., Zhang, H., Wang, T.: A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35(1), 109–118 (2016)

    Article  Google Scholar 

  27. Orlando, J.I., Prokofyeva, E., Blaschko, M.B.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE. Trans. Biomed. Eng. 64(1), 16–27 (2017)

    Article  Google Scholar 

  28. Yan, Z., Yang, X., Cheng, K.T.: Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE. Trans. Biomed. Eng. 65(9), 1912–1923 (2018)

    Article  Google Scholar 

  29. Wu, Y., Xia, Y., Song, Y., Zhang, Y., Cai, W.: Multiscale network followed network model for retinal vessel segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 119–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_14

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (62106208), the Sichuan Science and Technology Program (2020JDRC0031) and the China Postdoctoral Science Foundation (2021TQ0272, 2021M702715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, T., Huang, Y., Zhang, J. (2022). MLFF: Multiple Low-Level Features Fusion Model for Retinal Vessel Segmentation. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1566. Springer, Singapore. https://doi.org/10.1007/978-981-19-1253-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1253-5_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1252-8

  • Online ISBN: 978-981-19-1253-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics