[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Information Aggregation Approaches for Multi-criteria Applications

  • Chapter
  • First Online:
Real Life Applications of Multiple Criteria Decision Making Techniques in Fuzzy Domain

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 420))

  • 300 Accesses

Abstract

The effective use of multi-criteria techniques in specific applications will depend on relevant available data. Often such data arises from several various sources, and it is then typically desirable to aggregate some of this data before use as this could reduce computational complexity. Additionally such data frequently involves uncertainty, and this must be considered in the aggregation. Aggregation approaches ranging from possibilistic conditioning to probability and possibility transformations can be used to produce homogenous representations (probability or possibility) for aggregations. Here we review several approaches to uncertainty aggregation that apply to multi-criteria systems. Additionally, we consider approaches to evaluate the uncertainty of the aggregation to provide guidance of the use of the aggregated data for multi-criteria applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Kahraman, C.: Fuzzy Multi-criteria Decision Making: Theory and Applications with Recent Developments. Springer, New York (2008)

    Book  MATH  Google Scholar 

  2. Yager, R., Alajlan, N.: Multi-criteria formulations with uncertain satisfactions. Eng. Appl. Artif. Intell. 69, 104–111 (2018)

    Article  Google Scholar 

  3. Yager, R.: Modeling multi-criteria objective functions using fuzzy measures. Inf. Fusion 29, 105–111 (2016)

    Article  Google Scholar 

  4. Thill, J.: Spatial Multicriteria Decision Making and Analysis—A Geographic Information Sciences Approach. Routledge press, London (1999)

    Google Scholar 

  5. Jiang, H., Eastman, J.: Applications of fuzzy measures in multi-criteria evaluation in GIS. Int. J. Geogr. Inf. Sci. 14, 173–184 (2000)

    Article  Google Scholar 

  6. Elmore, P., Anderson, D., Petry, F.: Evaluation of heterogeneous uncertain information fusion. Ambient Intell. Humanized Comput. (2019)

    Google Scholar 

  7. Parsons, S.: Qualitative Methods for Reasoning under Uncertainty. MIT Press, Cambridge, MA (2001)

    Google Scholar 

  8. Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    Google Scholar 

  9. Elmore, P., Petry, F., Yager, R.: (2014) Comparative measures of aggregated uncertainty representations. J. Ambient Intell. Humanized Comput. 5, 809–819

    Google Scholar 

  10. Jumarie, G.: Possibility-probability transformation: a new result via information theory of deterministic functions. Kybernetes 23, 56–59 (1994)

    Google Scholar 

  11. Klir, G., Parviz, B.: Probability-possibility transformations: a comparison. Int. J. Gen. Syst. 21, 291–310 (1992)

    Article  MATH  Google Scholar 

  12. Oussalah, M.: On the probability/possibility transformations: a comparative analysis. Int. J. Gen. Syst. 29, 671–718 (2000)

    Article  MATH  Google Scholar 

  13. Dubois, D., Prade, H.: Unfair coins and necessity measures: towards a possibilistic interpretations of histograms. Fuzzy Sets Syst 10, 15–27 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  15. Reza, F.: An Introduction to Information Theory. McGraw Hill, New York (1961)

    Google Scholar 

  16. Klir, G.: Uncertainty and Information. Wiley, Hoboken NJ (2006)

    MATH  Google Scholar 

  17. Gini, C.: (1912) Variabilita e mutabilita (Variability and Mutability), Tipografia di Paolo Cuppini, Bologna, Italy, 156p

    Google Scholar 

  18. Aristondo, O., García-Lapresta, J.L., Lasso de la Vega, C., Pereira, R.: The Gini index, the dual decomposition of aggregation functions and the consistent measurement of inequality. Int. J. Intell. Syst. 27, 132–152 (2012)

    Article  MATH  Google Scholar 

  19. Eliazar, I., Sokolov, I.: Maximization of statistical heterogeneity: from Shannon’s entropy to Gini’s index. Phys. A 389, 3023–3038 (2010)

    Article  MathSciNet  Google Scholar 

  20. Yager, R.: Measures of entropy and fuzziness related to aggregation operators. Inf. Sci. 82, 147–166 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Renyi, A.: On measures of information and entropy. In: Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, pp. 547–561 (1961)

    Google Scholar 

  22. Renyi, A.: Probability Theory. North-Holland, Amsterdam (1970)

    MATH  Google Scholar 

  23. Hartley, R.: Transmission of information. Bell Syst. Tech. J. 7, 535–563 (1928)

    Article  Google Scholar 

  24. Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. MIT Press, Boston MA (1996)

    MATH  Google Scholar 

  25. Yager, R.: On the specificity of a possibility distribution. Fuzzy Sets Syst. 50, 279–292 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Delgado, M., Moral. S.: On the concept of possibility-probability consistency. Fuzzy Sets Syst. 21, 311–318 (1987)

    Google Scholar 

  27. Gupta, C.: A note on the transformation of possibilistic information into probabilistic information for investment decisions. Fuzzy Sets Syst. 56, 175–182 (1993)

    Google Scholar 

  28. Dubois, D., Prade, H.: On several representations of an uncertain body of evidence. In: Gupta, M., Sanchez, E. (eds.) Fuzzy Information and Decision Processes, pp. 167–182. North Holland, Amsterdam (1982)

    Google Scholar 

  29. Petry, F., Elmore, P., Yager, R.: Combining uncertain information of differing modalities. Inf. Sci. 322, 237–256 (2015)

    Google Scholar 

  30. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg DG (2007)

    MATH  Google Scholar 

  31. Yager, R.: On mean type aggregation. IEEE Trans. Syst. Man Cybern. 26, 209–221 (1996)

    Google Scholar 

  32. Yager, R., Petry, F.: An intelligent quality based approach to fusing multi-source probabilistic information. Inf. Fusion 31, 127–136 (2016)

    Article  Google Scholar 

  33. Anderson, D., Elmore, P., Petry, F., Havens, T.: Fuzzy Choquet integration of homogenous possibility and probability distributions. Inf. Sci. 363, 24–39 (2016)

    Google Scholar 

Download references

Acknowledgements

Petry would like to thank the Naval Research Laboratory’s Base Program for sponsoring this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick Petry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petry, F., Yager, R.R. (2023). Information Aggregation Approaches for Multi-criteria Applications. In: Sahoo, L., Senapati, T., Yager, R.R. (eds) Real Life Applications of Multiple Criteria Decision Making Techniques in Fuzzy Domain. Studies in Fuzziness and Soft Computing, vol 420. Springer, Singapore. https://doi.org/10.1007/978-981-19-4929-6_9

Download citation

Publish with us

Policies and ethics