[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Performance Optimization of Fault Diagnosis Methods for Power Systems

  • Book
  • © 2023

Overview

  • Introduces credible and efficient modeling technologies for wind turbines and power data
  • Studies both the model based algorithms and data driven algorithms
  • Provides valuable guidance for holistic power system fault diagnosis

Part of the book series: Engineering Applications of Computational Methods (EACM, volume 9)

  • 1201 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book focuses on the performance optimization of fault diagnosis methods for power systems including both model-driven ones, such as the linear parameter varying algorithm, and data-driven ones, such as random matrix theory. Studies on fault diagnosis of power systems have long been the focus of electrical engineers and scientists. Pursuing a holistic approach to improve the accuracy and efficiency of existing methods, the underlying concepts toward several algorithms are introduced and then further applied in various situations for fault diagnosis of power systems in this book. The primary audience for the book would be the scholars and graduate students whose research topics including the control theory, applied mathematics, fault detection, and so on.

Similar content being viewed by others

Keywords

Table of contents (7 chapters)

Authors and Affiliations

  • School of Internet of Things Engineering, Jiangnan University, Wuxi, China

    Dinghui Wu, Juan Zhang, Junyan Fan, Dandan Tang

About the authors

Dr. Dinghui Wu received the Ph.D. degree in Control Science and Engineering with Jiangnan University and now is a Visiting Fellow with the School of Computer and electronic engineering, University of Denver, the US. His current research interests include energy optimization control technology, fault diagnosis of power systems, and edge calculation. Since Nov. 2019, Dr. Wu has been in School of Internet of Things Engineering, Jiangnan University, Wuxi, China, as a Professor. 

 

Ms. Juan Zhang received the master's degree in Electrical Engineering with Jiangnan University, China, in 2021. She began her doctoral program with Jiangnan University, China, in 2021. Her current research interests include fault diagnosis of power systems and random matrix theory.

 

Mr. Junyan Fan received master's degree in mechatronics engineering with Jiangsu Ocean University, China, in 2021. He began his doctoral program with Jiangnan University, China,in 2021. His current research interests include energy prediction and energy optimization.

 

Ms. Dandan Tang received the bachelor's degree in Electrical Engineering with Jiangnan University, China,in 2020. She began her master’s program with Jiangnan University, China, in 2020. Her current research interests include distributed fault diagnosis of deep learning and federated learning.



Bibliographic Information

Publish with us