Abstract
Energy efficiency is one of the biggest challenges presently faced by high performance computing (HPC) systems. The need to build energy-efficient computer systems and applications in the field of scientific computing is growing every day. Numerous researches have been carried out in the fields of embedded systems and mobile computing to minimize the power consumed by devices. The components and algorithms developed for achieving energy efficiency in such systems can also be applied in the field of HPC. In this paper, we survey the power managing techniques for HPC systems. We discuss different power management techniques on several important parameters to identify the merits and demerits of such techniques. This paper is intended to help in developing more deep understanding of different power management techniques and designing more energy-efficient HPC systems of tomorrow.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shehabi, A., Smith, S., Sartor, D., Brown, R., Herrlin, M., Koomey, J., Masanet, E., Horner, N., Azevedo, I., & Lintner, W. (2016). United states data center energy usage report.
Liu, Y., & Zhu, H. (2010). A survey of the research on power management techniques for high-performance systems. Software: Practice and Experience, 40(11), 943–964.
Feng, W.-C. (2003). Making a case for efficient supercomputing. Queue, 1(7), 54.
Ge, R., Feng, X., Song, S., Chang, H.-C., Li, D., & Cameron, K. W. (2010). Powerpack: Energy profiling and analysis of high-performance systems and applications. IEEE Transactions on Parallel and Distributed Systems, 21(5), 658–671.
Pinheiro, E., Bianchini, R., & Dubnicki, C. (2006). Exploiting redundancy to conserve energy in storage systems. ACM SIGMETRICS Performance Evaluation Review, 34(1), 15–26.
Rivoire, S., Shah, M. A., Ranganathan, P., & Kozyrakis, C. (2007) Joulesort: A balanced energy-efficiency benchmark,” in Proceedings of the 2007 ACM SIGMOD international conference on Management of data. ACM (pp. 365–376).
Caulfield, A. M., Grupp, L. M., & Swanson, S. (2009). Gordon: using flash memory to build fast, power-efficient clusters for data-intensive applications. ACM Sigplan Notices, 44(3), 217–228.
Andersen, D. G., Franklin, J., Kaminsky, M., Phanishayee, A., Tan, L., & Vasudevan, V. (2009). Fawn: A fast array of wimpy nodes. In: Proceedings of the ACM SIGOPS 22nd symposium on Operating Systems Principles. ACM (pp. 1–14).
Hamilton, J. (2009). Cooperative expendable micro-slice servers (cems): low cost, low power servers for internet-scale services. In Conference on Innovative Data Systems Research (CIDR’09)(January 2009).
Vasudevan, V., Andersen, D., Kaminsky, M., Tan, L., Franklin, J., & Moraru, I. (2010). Energy-efficient cluster computing with fawn: Workloads and implications. In Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking. ACM (pp. 195–204).
Valentini, G. L., Lassonde, W., Khan, S. U., Min-Allah, N., Madani, S. A., Li, J., et al. (2013). An overview of energy efficiency techniques in cluster computing systems. Cluster Computing, 1–13.
Ge, R., Feng, X., & Cameron, K. W. (2005). Improvement of power-performance efficiency for high-end computing. In 19th IEEE International Proceedings on Parallel and Distributed Processing Symposium, 2005. IEEE (pp. 8–pp).
Hotta, Y., Sato, M., Kimura, H., Matsuoka, S., Boku, T., & Takahashi, D. (2006). Profile-based optimization of power performance by using dynamic voltage scaling on a pc cluster. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International. IEEE (pp. 8–pp).
Rajamani, K., Hanson, H., Rubio, J., Ghiasi, S., & Rawson, F. (2006). Application-aware power management. In 2006 IEEE International Symposium on Workload Characterization. IEEE (pp. 39–48).
Freeh, V. W., Kappiah, N., Lowenthal, D. K., & Bletsch, T. K. (2008). Just-in-time dynamic voltage scaling: Exploiting inter-node slack to save energy in mpi programs. Journal of Parallel and Distributed Computing, 68(9), 1175–1185.
Khargharia, B., Hariri, S., & Yousif, M. S. (2008). Autonomic power and performance management for computing systems. Cluster computing, 11(2), 167–181.
Von Laszewski, G., Wang, L., Younge, A. J., & He, X. (2009) Power-aware scheduling of virtual machines in dvfs-enabled clusters. In IEEE International Conference on Cluster Computing and Workshops, 2009. CLUSTER’09. IEEE (pp. 1–10).
Huang, S., & Feng, W. (2009) Energy-efficient cluster computing via accurate workload characterization. In Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid. IEEE Computer Society (pp. 68–75).
Le Sueur, E., & Heiser, G. (2010) Dynamic voltage and frequency scaling: The laws of diminishing returns.
Alvarruiz, F., de Alfonso, C., Caballer, M., & Hern’ndez, V. (2012). An energy manager for high performance computer clusters. In 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications (ISPA). IEEE (pp. 231–238).
Ozturk, O., Kandemir, M., & Chen, G. (2013). Compiler-directed energy reduction using dynamic voltage scaling and voltage islands for embedded systems. IEEE Transactions on Computers, 62(2), 268–278.
Pedram, M. (2001). Power optimization and management in embedded systems. In Proceedings of the 2001 Asia and South Pacific Design Automation Conference. ACM (pp. 239–244).
Brock, B., & Rajamani, K. (2003). Dynamic power management for embedded systems [soc design]. In SOC Conference, 2003. Proceedings. IEEE International [Systems-on-Chip]. IEEE (pp. 416–419).
Agarwal, Y., Schurgers, C., & Gupta, R. (2005). Dynamic power management using on demand paging for networked embedded systems. In Proceedings of the 2005 Asia and South Pacific Design Automation Conference. ACM (pp. 755–759).
Raghunathan, V., & Chou, P. H. (2006). Design and power management of energy harvesting embedded systems. In Proceedings of the 2006 international symposium on Low power electronics and design. ACM (pp. 369–374).
Choi, Y., Chang, N., & Kim, T. (2007). Dc-dc converter-aware power management for low-power embedded systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(8), 1367–1381.
Park, D., Lee, J., Kim, N. S., & Kim, T. (2010). Optimal algorithm for profile-based power gating: A compiler technique for reducing leakage on execution units in microprocessors. In Proceedings of the International Conference on Computer-Aided Design. IEEE Press (pp. 361–364).
Pinheiro, E., Bianchini, R., Carrera, E. V., & Heath, T. (2001). Load balancing and unbalancing for power and performance in cluster-based systems. In Workshop on compilers and operating systems for low power, Vol. 180. Barcelona, Spain (pp. 182–195).
Chase, J. S., Anderson, D. C., Thakar, P. N., Vahdat, A. M., & Doyle, R. P. (2001). Managing energy and server resources in hosting centers. ACM SIGOPS operating systems review, 35(5), 103–116.
Fan, X., Weber, W.-D., & Barroso, L. A. (2007). Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, 35(2), 13–23.
Ranganathan, P., Leech, P., Irwin, D., & Chase, J. (2006). Ensemble-level power management for dense blade servers. ACM SIGARCH Computer Architecture News, 34(2), 66–77.
Femal, M. E., & Freeh, V. W. (2005). Boosting data center performance through non-uniform power allocation. In Proceedings of 2nd International Conference on Autonomic Computing, 2005. ICAC 2005. IEEE (pp. 250–261).
Wang, X., & Chen, M. (2008). Cluster-level feedback power control for performance optimization. In IEEE 14th International Symposium on High Performance Computer Architecture, 2008. HPCA 2008. IEEE (pp. 101–110).
Skadron, K., Abdelzaher, T., & Stan, M. R. (2002). Control-theoretic techniques and thermal-rc modeling for accurate and localized dynamic thermal management. In High-Performance Computer Architecture, 2002. Proceedings. Eighth International Symposium on. IEEE (pp. 17–28).
Taffoni, G., Tornatore, L., Goz, D., Ragagnin, A., Bertocco, S., Coretti, I., Marazakis, M., Chaix, F., Plumidis, M., Katevenis, M., Panchieri, R., & Perna, G. (2019). Towards exascale: Measuring the energy footprint of astrophysics hpc simulations. In 2019 15th International Conference on eScience (eScience) (pp. 403–412).
Bianchini, R., & Rajamony, R. (2004). Power and energy management for server systems. Computer, 37(11), 68–76.
Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang, Q., & Gautam, N. (2005). Managing server energy and operational costs in hosting centers. ACM SIGMETRICS Performance Evaluation Review, 33(1), 303–314.
Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., & Zhu, X. (2008). No power struggles: Coordinated multi-level power management for the data center. ACM SIGARCH Computer Architecture News, 36(1), 48–59.
Narayanan, D., Donnelly, A., & Rowstron, A. (2008). Write off-loading: Practical power management for enterprise storage. ACM Transactions on Storage (TOS), 4(3), 10.
Govindan, S., Choi, J., Urgaonkar, B., Sivasubramaniam, A., & Baldini, A. (2009). Statistical profiling-based techniques for effective power provisioning in data centers. In Proceedings of the 4th ACM European conference on Computer systems. ACM (pp. 317–330).
Leverich, J., Monchiero, M., Talwar, V., Ranganathan, P., & Kozyrakis, C. (2009). Power management of datacenter workloads using per-core power gating. IEEE Computer Architecture Letters, 8(2), 48–51.
Liu, J., Zhao, F., Liu, X., & He, W. (2009). Challenges towards elastic power management in internet data centers. In Distributed Computing Systems Workshops, 2009. ICDCS Workshops’ 09. 29th IEEE International Conference on. IEEE (pp. 65–72).
Urgaonkar, R., Kozat, U. C., Igarashi, K., & Neely, M. J. (2010). Dynamic resource allocation and power management in virtualized data centers. In Network Operations and Management Symposium (NOMS), 2010 IEEE. IEEE (pp. 479–486).
Beloglazov, A., & Buyya, R. (2010). Energy efficient resource management in virtualized cloud data centers. In Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing. IEEE Computer Society (pp. 826–831).
Lin, M., Wierman, A., Andrew, L. L., & Thereska, E. (2013). Dynamic right-sizing for power-proportional data centers. IEEE/ACM Transactions on Networking (TON), 21(5), 1378–1391.
Colarelli, D., & Grunwald, D. (2002). Massive arrays of idle disks for storage archives,” in Proceedings of the 2002 ACM/IEEE Conference on Supercomputing (pp. 1–11). IEEE Computer Society Press.
Freeh, V. W., & Lowenthal, D. K. (2005). Using multiple energy gears in mpi programs on a power-scalable cluster. In Proceedings of the tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, (pp. 164–173).
Moore, J. D., Chase, J. S., Ranganathan, P., & Sharma, R. K. (2005). Making scheduling “ol” emperature-aware workload placement in data centers. In USENIX Annual Technical Conference, General Track (pp. 61–75).
Heath, T., Centeno, A. P., George, P., Ramos, L., Jaluria, Y., & Bianchini, R. (2006). Mercury and freon: Temperature emulation and management for server systems. ACM SIGARCH Computer Architecture News, 34(5), 106–116.
Stoess, J., Lang, C., & Bellosa, F. (2007). Energy management for hypervisor-based virtual machines. In USENIX annual technical conference, (pp. 1–14).
Verma, A., Ahuja, P., & Neogi, A. (2008). Pmapper: Power and migration cost aware application placement in virtualized systems. In Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware. Springer, (pp. 243–264).
Leng, J., Hetherington, T., ElTantawy, A., Gilani, S., Kim, N. S., Aamodt, T. M., et al. (2013). Gpuwattch: Enabling energy optimizations in gpgpus. ACM SIGARCH Computer Architecture News, 41(3), 487–498.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ahmed, M., Ahmed, W. (2022). State-of-the-Art Power Management Techniques. In: Gupta, D., Khanna, A., Kansal, V., Fortino, G., Hassanien, A.E. (eds) Proceedings of Second Doctoral Symposium on Computational Intelligence . Advances in Intelligent Systems and Computing, vol 1374. Springer, Singapore. https://doi.org/10.1007/978-981-16-3346-1_18
Download citation
DOI: https://doi.org/10.1007/978-981-16-3346-1_18
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-3345-4
Online ISBN: 978-981-16-3346-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)