[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

State-of-the-Art Power Management Techniques

  • Conference paper
  • First Online:
Proceedings of Second Doctoral Symposium on Computational Intelligence

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1374))

  • 1359 Accesses

Abstract

Energy efficiency is one of the biggest challenges presently faced by high performance computing (HPC) systems. The need to build energy-efficient computer systems and applications in the field of scientific computing is growing every day. Numerous researches have been carried out in the fields of embedded systems and mobile computing to minimize the power consumed by devices. The components and algorithms developed for achieving energy efficiency in such systems can also be applied in the field of HPC. In this paper, we survey the power managing techniques for HPC systems. We discuss different power management techniques on several important parameters to identify the merits and demerits of such techniques. This paper is intended to help in developing more deep understanding of different power management techniques and designing more energy-efficient HPC systems of tomorrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shehabi, A., Smith, S., Sartor, D., Brown, R., Herrlin, M., Koomey, J., Masanet, E., Horner, N., Azevedo, I., & Lintner, W. (2016). United states data center energy usage report.

    Google Scholar 

  2. Liu, Y., & Zhu, H. (2010). A survey of the research on power management techniques for high-performance systems. Software: Practice and Experience, 40(11), 943–964.

    Google Scholar 

  3. Feng, W.-C. (2003). Making a case for efficient supercomputing. Queue, 1(7), 54.

    Article  Google Scholar 

  4. Ge, R., Feng, X., Song, S., Chang, H.-C., Li, D., & Cameron, K. W. (2010). Powerpack: Energy profiling and analysis of high-performance systems and applications. IEEE Transactions on Parallel and Distributed Systems, 21(5), 658–671.

    Article  Google Scholar 

  5. Pinheiro, E., Bianchini, R., & Dubnicki, C. (2006). Exploiting redundancy to conserve energy in storage systems. ACM SIGMETRICS Performance Evaluation Review, 34(1), 15–26.

    Article  Google Scholar 

  6. Rivoire, S., Shah, M. A., Ranganathan, P., & Kozyrakis, C. (2007) Joulesort: A balanced energy-efficiency benchmark,” in Proceedings of the 2007 ACM SIGMOD international conference on Management of data. ACM (pp. 365–376).

    Google Scholar 

  7. Caulfield, A. M., Grupp, L. M., & Swanson, S. (2009). Gordon: using flash memory to build fast, power-efficient clusters for data-intensive applications. ACM Sigplan Notices, 44(3), 217–228.

    Article  Google Scholar 

  8. Andersen, D. G., Franklin, J., Kaminsky, M., Phanishayee, A., Tan, L., & Vasudevan, V. (2009). Fawn: A fast array of wimpy nodes. In: Proceedings of the ACM SIGOPS 22nd symposium on Operating Systems Principles. ACM (pp. 1–14).

    Google Scholar 

  9. Hamilton, J. (2009). Cooperative expendable micro-slice servers (cems): low cost, low power servers for internet-scale services. In Conference on Innovative Data Systems Research (CIDR’09)(January 2009).

    Google Scholar 

  10. Vasudevan, V., Andersen, D., Kaminsky, M., Tan, L., Franklin, J., & Moraru, I. (2010). Energy-efficient cluster computing with fawn: Workloads and implications. In Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking. ACM (pp. 195–204).

    Google Scholar 

  11. Valentini, G. L., Lassonde, W., Khan, S. U., Min-Allah, N., Madani, S. A., Li, J., et al. (2013). An overview of energy efficiency techniques in cluster computing systems. Cluster Computing, 1–13.

    Google Scholar 

  12. Ge, R., Feng, X., & Cameron, K. W. (2005). Improvement of power-performance efficiency for high-end computing. In 19th IEEE International Proceedings on Parallel and Distributed Processing Symposium, 2005. IEEE (pp. 8–pp).

    Google Scholar 

  13. Hotta, Y., Sato, M., Kimura, H., Matsuoka, S., Boku, T., & Takahashi, D. (2006). Profile-based optimization of power performance by using dynamic voltage scaling on a pc cluster. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International. IEEE (pp. 8–pp).

    Google Scholar 

  14. Rajamani, K., Hanson, H., Rubio, J., Ghiasi, S., & Rawson, F. (2006). Application-aware power management. In 2006 IEEE International Symposium on Workload Characterization. IEEE (pp. 39–48).

    Google Scholar 

  15. Freeh, V. W., Kappiah, N., Lowenthal, D. K., & Bletsch, T. K. (2008). Just-in-time dynamic voltage scaling: Exploiting inter-node slack to save energy in mpi programs. Journal of Parallel and Distributed Computing, 68(9), 1175–1185.

    Article  Google Scholar 

  16. Khargharia, B., Hariri, S., & Yousif, M. S. (2008). Autonomic power and performance management for computing systems. Cluster computing, 11(2), 167–181.

    Article  Google Scholar 

  17. Von Laszewski, G., Wang, L., Younge, A. J., & He, X. (2009) Power-aware scheduling of virtual machines in dvfs-enabled clusters. In IEEE International Conference on Cluster Computing and Workshops, 2009. CLUSTER’09. IEEE (pp. 1–10).

    Google Scholar 

  18. Huang, S., & Feng, W. (2009) Energy-efficient cluster computing via accurate workload characterization. In Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid. IEEE Computer Society (pp. 68–75).

    Google Scholar 

  19. Le Sueur, E., & Heiser, G. (2010) Dynamic voltage and frequency scaling: The laws of diminishing returns.

    Google Scholar 

  20. Alvarruiz, F., de Alfonso, C., Caballer, M., & Hern’ndez, V. (2012). An energy manager for high performance computer clusters. In 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications (ISPA). IEEE (pp. 231–238).

    Google Scholar 

  21. Ozturk, O., Kandemir, M., & Chen, G. (2013). Compiler-directed energy reduction using dynamic voltage scaling and voltage islands for embedded systems. IEEE Transactions on Computers, 62(2), 268–278.

    Article  MathSciNet  Google Scholar 

  22. Pedram, M. (2001). Power optimization and management in embedded systems. In Proceedings of the 2001 Asia and South Pacific Design Automation Conference. ACM (pp. 239–244).

    Google Scholar 

  23. Brock, B., & Rajamani, K. (2003). Dynamic power management for embedded systems [soc design]. In SOC Conference, 2003. Proceedings. IEEE International [Systems-on-Chip]. IEEE (pp. 416–419).

    Google Scholar 

  24. Agarwal, Y., Schurgers, C., & Gupta, R. (2005). Dynamic power management using on demand paging for networked embedded systems. In Proceedings of the 2005 Asia and South Pacific Design Automation Conference. ACM (pp. 755–759).

    Google Scholar 

  25. Raghunathan, V., & Chou, P. H. (2006). Design and power management of energy harvesting embedded systems. In Proceedings of the 2006 international symposium on Low power electronics and design. ACM (pp. 369–374).

    Google Scholar 

  26. Choi, Y., Chang, N., & Kim, T. (2007). Dc-dc converter-aware power management for low-power embedded systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(8), 1367–1381.

    Article  Google Scholar 

  27. Park, D., Lee, J., Kim, N. S., & Kim, T. (2010). Optimal algorithm for profile-based power gating: A compiler technique for reducing leakage on execution units in microprocessors. In Proceedings of the International Conference on Computer-Aided Design. IEEE Press (pp. 361–364).

    Google Scholar 

  28. Pinheiro, E., Bianchini, R., Carrera, E. V., & Heath, T. (2001). Load balancing and unbalancing for power and performance in cluster-based systems. In Workshop on compilers and operating systems for low power, Vol. 180. Barcelona, Spain (pp. 182–195).

    Google Scholar 

  29. Chase, J. S., Anderson, D. C., Thakar, P. N., Vahdat, A. M., & Doyle, R. P. (2001). Managing energy and server resources in hosting centers. ACM SIGOPS operating systems review, 35(5), 103–116.

    Article  Google Scholar 

  30. Fan, X., Weber, W.-D., & Barroso, L. A. (2007). Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, 35(2), 13–23.

    Article  Google Scholar 

  31. Ranganathan, P., Leech, P., Irwin, D., & Chase, J. (2006). Ensemble-level power management for dense blade servers. ACM SIGARCH Computer Architecture News, 34(2), 66–77.

    Article  Google Scholar 

  32. Femal, M. E., & Freeh, V. W. (2005). Boosting data center performance through non-uniform power allocation. In Proceedings of 2nd International Conference on Autonomic Computing, 2005. ICAC 2005. IEEE (pp. 250–261).

    Google Scholar 

  33. Wang, X., & Chen, M. (2008). Cluster-level feedback power control for performance optimization. In IEEE 14th International Symposium on High Performance Computer Architecture, 2008. HPCA 2008. IEEE (pp. 101–110).

    Google Scholar 

  34. Skadron, K., Abdelzaher, T., & Stan, M. R. (2002). Control-theoretic techniques and thermal-rc modeling for accurate and localized dynamic thermal management. In High-Performance Computer Architecture, 2002. Proceedings. Eighth International Symposium on. IEEE (pp. 17–28).

    Google Scholar 

  35. Taffoni, G., Tornatore, L., Goz, D., Ragagnin, A., Bertocco, S., Coretti, I., Marazakis, M., Chaix, F., Plumidis, M., Katevenis, M., Panchieri, R., & Perna, G. (2019). Towards exascale: Measuring the energy footprint of astrophysics hpc simulations. In 2019 15th International Conference on eScience (eScience) (pp. 403–412).

    Google Scholar 

  36. Bianchini, R., & Rajamony, R. (2004). Power and energy management for server systems. Computer, 37(11), 68–76.

    Article  Google Scholar 

  37. Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang, Q., & Gautam, N. (2005). Managing server energy and operational costs in hosting centers. ACM SIGMETRICS Performance Evaluation Review, 33(1), 303–314.

    Article  Google Scholar 

  38. Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., & Zhu, X. (2008). No power struggles: Coordinated multi-level power management for the data center. ACM SIGARCH Computer Architecture News, 36(1), 48–59.

    Article  Google Scholar 

  39. Narayanan, D., Donnelly, A., & Rowstron, A. (2008). Write off-loading: Practical power management for enterprise storage. ACM Transactions on Storage (TOS), 4(3), 10.

    Google Scholar 

  40. Govindan, S., Choi, J., Urgaonkar, B., Sivasubramaniam, A., & Baldini, A. (2009). Statistical profiling-based techniques for effective power provisioning in data centers. In Proceedings of the 4th ACM European conference on Computer systems. ACM (pp. 317–330).

    Google Scholar 

  41. Leverich, J., Monchiero, M., Talwar, V., Ranganathan, P., & Kozyrakis, C. (2009). Power management of datacenter workloads using per-core power gating. IEEE Computer Architecture Letters, 8(2), 48–51.

    Article  Google Scholar 

  42. Liu, J., Zhao, F., Liu, X., & He, W. (2009). Challenges towards elastic power management in internet data centers. In Distributed Computing Systems Workshops, 2009. ICDCS Workshops’ 09. 29th IEEE International Conference on. IEEE (pp. 65–72).

    Google Scholar 

  43. Urgaonkar, R., Kozat, U. C., Igarashi, K., & Neely, M. J. (2010). Dynamic resource allocation and power management in virtualized data centers. In Network Operations and Management Symposium (NOMS), 2010 IEEE. IEEE (pp. 479–486).

    Google Scholar 

  44. Beloglazov, A., & Buyya, R. (2010). Energy efficient resource management in virtualized cloud data centers. In Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing. IEEE Computer Society (pp. 826–831).

    Google Scholar 

  45. Lin, M., Wierman, A., Andrew, L. L., & Thereska, E. (2013). Dynamic right-sizing for power-proportional data centers. IEEE/ACM Transactions on Networking (TON), 21(5), 1378–1391.

    Article  Google Scholar 

  46. Colarelli, D., & Grunwald, D. (2002). Massive arrays of idle disks for storage archives,” in Proceedings of the 2002 ACM/IEEE Conference on Supercomputing (pp. 1–11). IEEE Computer Society Press.

    Google Scholar 

  47. Freeh, V. W., & Lowenthal, D. K. (2005). Using multiple energy gears in mpi programs on a power-scalable cluster. In Proceedings of the tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, (pp. 164–173).

    Google Scholar 

  48. Moore, J. D., Chase, J. S., Ranganathan, P., & Sharma, R. K. (2005). Making scheduling “ol” emperature-aware workload placement in data centers. In USENIX Annual Technical Conference, General Track (pp. 61–75).

    Google Scholar 

  49. Heath, T., Centeno, A. P., George, P., Ramos, L., Jaluria, Y., & Bianchini, R. (2006). Mercury and freon: Temperature emulation and management for server systems. ACM SIGARCH Computer Architecture News, 34(5), 106–116.

    Article  Google Scholar 

  50. Stoess, J., Lang, C., & Bellosa, F. (2007). Energy management for hypervisor-based virtual machines. In USENIX annual technical conference, (pp. 1–14).

    Google Scholar 

  51. Verma, A., Ahuja, P., & Neogi, A. (2008). Pmapper: Power and migration cost aware application placement in virtualized systems. In Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware. Springer, (pp. 243–264).

    Google Scholar 

  52. Leng, J., Hetherington, T., ElTantawy, A., Gilani, S., Kim, N. S., Aamodt, T. M., et al. (2013). Gpuwattch: Enabling energy optimizations in gpgpus. ACM SIGARCH Computer Architecture News, 41(3), 487–498.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, M., Ahmed, W. (2022). State-of-the-Art Power Management Techniques. In: Gupta, D., Khanna, A., Kansal, V., Fortino, G., Hassanien, A.E. (eds) Proceedings of Second Doctoral Symposium on Computational Intelligence . Advances in Intelligent Systems and Computing, vol 1374. Springer, Singapore. https://doi.org/10.1007/978-981-16-3346-1_18

Download citation

Publish with us

Policies and ethics