[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Dynamic Key-Value Gated Recurrent Network for Knowledge Tracing

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1330))

  • 1231 Accesses

Abstract

Knowledge tracing model is one of the important research fields to realize personalized intelligent education. The focus of the model is to trace students’ knowledge mastery from the records of students’ answering performance. However, the existing knowledge tracing models don’t consider the problems of students’ knowledge application ability and forgetting rules. Based on the external memory mechanism of Dynamic Key-Value Memory Networks (DKVMN), this paper proposes a knowledge tracing model based on a dynamic key-value gated recurrent network (DKVGRU), which designs a knowledge update network inspired the idea of Gated Recurrent Unit (GRU). DKVGRU calculates the proportion of concepts students apply and measures the degree of forgetting of learned concepts, which traces the knowledge state of each concept well. In this paper, the area under the receiver operating characteristic curve (AUC) of the prediction result is used as an evaluation indicator. The performance of DKVGRU is higher than DKVMN on four public datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, H., Zhang, T., Wu, P., Yu, G.: A review of knowledge tracking. Comput. Sci. Eng. (5), 1–15 (2019)

    Google Scholar 

  2. Pardos, Z., Heffernan, N.: Modeling individualization in a bayesian networks implementation of knowledge tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13470-8_24

    Chapter  Google Scholar 

  3. Xu, M., Wu, W., Zhou, X., Pu, Y.: Research on multi-knowledge point knowledge tracing model and visualization. J. Audio-visual Educ. Res. 39(10), 55–61 (2018)

    Google Scholar 

  4. Yeung, C.K., Lin, Z., Yang, K., et al.: Incorporating features learned by an enhanced deep knowledge tracing model for STEM/Non-STEM job prediction. J. CoRR (2018)

    Google Scholar 

  5. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User Adap. Interact. 4(4), 253–278 (1994)

    Article  Google Scholar 

  6. Piech, C., et al.: Deep knowledge tracing. Comput. Sci. 3(3), 19–23 (2015)

    Google Scholar 

  7. Zhang, J., Shi, X., King, L., Yeung, D.: Dynamic key-value memory networks for knowledge tracing. In: The Web Conference, pp. 765–774. ACM (2017)

    Google Scholar 

  8. Deng, Y., et al.: Application of Ebbinghaus forgetting curve theory in teaching medical imaging diagnosis. Chin. J. Med. Educ. 33(4), 555–557 (2013)

    Google Scholar 

  9. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. Comput. Sci. 1724–1734 (2014)

    Google Scholar 

  10. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  11. Li, F., Ye, Y., Li, X., Shi, D.: Application of knowledge tracking model in education: a summary of related research from 2008 to 2017. Distance Educ. China (007), 86–91 (2019)

    Google Scholar 

  12. Wang, Z., Zhang, M.: MOOC student assessment based on Bayesian knowledge tracing model. China Sciencepaper 10(02), 241–246 (2015)

    Google Scholar 

  13. Ye, Y., Li, F., Liu, Q.: The influence of forgetting and data volume into the knowledge tracking model on prediction accuracy. China Acad. J. Electron. Publishing House (008), 20–26 (2019)

    Google Scholar 

  14. Pardos, Z., Heffernan, N.: KT-IDEM: introducing item difficulty to the knowledge tracing model. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 243–254. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22362-4_21

    Chapter  Google Scholar 

  15. Yudelson, M., Koedinger, K., Gordon, G.: Individualized Bayesian knowledge tracing models. In: Chad Lane, H., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 171–180. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39112-5_18

    Chapter  Google Scholar 

  16. Spaulding, S., Breazeal, C.: Affect and inference in Bayesian knowledge tracing with a robot tutor. In: The Tenth Annual ACM/IEEE International Conference, pp. 219–220. ACM (2015)

    Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  18. Khajah, M., Lindsey, R.L., Mozer, M.C.: How deep is knowledge tracing? In: Proceedings of the 9th International Conference on Educational Data Mining, pp. 94–101 (2016)

    Google Scholar 

  19. Yeung, C.K., Yeung, D.: Addressing two problems in deep knowledge tracing via prediction-consistent regularization. In: 5th Annual ACM Conference on Learning at Scale, pp. 1–10 (2018)

    Google Scholar 

  20. Xiong, X., Zhao, S., Van Inwegen, E.G., Beck, J.E.: Going deeper with deep knowledge tracing. In: 9th International Conference on Educational Data Mining, North Carolina, pp. 545–550 (2016)

    Google Scholar 

  21. Minn, S., Yu, Y., Desmarais, M.C., Zhu, F., Vie, J.J.: Deep knowledge tracing and dynamic student classification for knowledge tracing. In: 2018 IEEE International Conference on Data Mining, pp. 1182–1187. IEEE (2018)

    Google Scholar 

  22. Wang, Z., Feng, X., Tang, J., Huang, G., Liu, Z.: Deep knowledge tracing with side information. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11626, pp. 303–308. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23207-8_56

    Chapter  Google Scholar 

  23. Zhang, L., Xiong, X.L., Zhao, S.Y., Botelho, A.F., Heffernan, N.T.: Incorporating rich features into deep knowledge tracing. In: ACM Conference on Learning (2017)

    Google Scholar 

  24. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D.: Meta-learning with memory-augmented neural networks. In: 33rd International Conference on Machine Learning, pp. 1842–1850. IMLS, New York City (2016)

    Google Scholar 

  25. Miller, A., Fisch, A., Dodge, J., Karimi, A.H., Bordes, A., Weston, J.: Key-value memory networks for directly reading documents (2016)

    Google Scholar 

  26. Ha, H., Hwang, U., Hong, Y., Yoon, S.: Memory-augmented neural networks for knowledge tracing from the perspective of learning and forgetting. In: 33rd Innovative Applications of Artificial Intelligence Conference Honolulu, Hawaii, USA (2018)

    Google Scholar 

  27. Yang, L., Wu, Y., Wang, J., Liu, Y.: Research on recurrent neural network. J. Comput. Appl. 38(S2), 6–11+31 (2018)

    Google Scholar 

  28. Wang, Y., Chen, S.: A survey of evaluation and design for AUC based classifier. Pattern Recogn. Artif. Intell. 24(001), 64–71 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, B., Fu, L., Jiang, B., Chen, L. (2021). Dynamic Key-Value Gated Recurrent Network for Knowledge Tracing. In: Sun, Y., Liu, D., Liao, H., Fan, H., Gao, L. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2020. Communications in Computer and Information Science, vol 1330. Springer, Singapore. https://doi.org/10.1007/978-981-16-2540-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2540-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2539-8

  • Online ISBN: 978-981-16-2540-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics