[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cervical Cell Detection Benchmark with Effective Feature Representation

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1397))

Included in the following conference series:

  • 1674 Accesses

Abstract

As deep convolutional neural networks have shown promising performance in medical image analysis, a number of deep learning based cervical cytology diagnosis methods were developed in recent years. Most studies have achieved available performance in cell classification or segmentation, however, there still exists some challenges for effective screening. Cervical cell detection is a more significant task in cytology diagnosis for cancers. In this paper, we propose a detection framework with effective feature representation for automatic cervical cytology analysis. We employ elastic transformation and a channel and spacial attention module to obtain a more powerful feature extractor. The experimental results demonstrate the efficiency and accuracy improved by our effective feature representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alom, M.Z., Yakopcic, C., Taha, T., Asari, V.: Microscopic nuclei classification, segmentation and detection with improved deep convolutional neural network (DCNN) approaches, November 2018

    Google Scholar 

  2. Bamford, P., Lovell, B.: A water immersion algorithm for cytological image segmentation, March 1998

    Google Scholar 

  3. Bergmeir, C., Garcia-Silvente, M., Benítez, J.: Segmentation of cervical cell nuclei in high-resolution microscopic images: a new algorithm and a web-based software framework. Comput. Methods Programs Biomed. 107, 497–512 (2012). https://doi.org/10.1016/j.cmpb.2011.09.017

    Article  Google Scholar 

  4. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  5. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. CoRR abs/1712.00726 (2017). http://arxiv.org/abs/1712.00726

  6. Chen, K., Zhang, N., Powers, L., Roveda, J.: Cell nuclei detection and segmentation for computational pathology using deep learning, p. 12, April 2019. https://doi.org/10.22360/springsim.2019.msm.012

  7. Genctav, A., Aksoy, S.: Segmentation of cervical cell images, pp. 2399–2402, August 2010. https://doi.org/10.1109/ICPR.2010.587

  8. Genctav, A., Aksoy, S., Onder, S.: Unsupervised segmentation and classification of cervical cell images. Pattern Recogn. 45, 4151–4168 (2012). https://doi.org/10.1016/j.patcog.2012.05.006

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. CoRR abs/1709.01507 (2017). http://arxiv.org/abs/1709.01507

  11. Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: Pap-smear benchmark data for pattern classification. In: Nature inspired Smart Information Systems (NiSIS 2005), pp. 1–9 (2005)

    Google Scholar 

  12. Khamparia, A., Gupta, D., de Albuquerque, V.H.C., Sangaiah, A.K., Jhaveri, R.H.: Internet of health things-driven deep learning system for detection and classification of cervical cells using transfer learning. J. Supercomput. 76(11), 8590–8608 (2020). https://doi.org/10.1007/s11227-020-03159-4

    Article  Google Scholar 

  13. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. CoRR abs/1708.02002 (2017). http://arxiv.org/abs/1708.02002

  14. Liu, W., et al.: SSD: single shot multibox detector. CoRR abs/1512.02325 (2015). http://arxiv.org/abs/1512.02325

  15. Mishra, G., Pimple, S., Shastri, S.: An overview of prevention and early detection of cervical cancers. Indian J. Med. Paediatr. Oncol. 32(3), 125–132 (2011). https://doi.org/10.4103/0971-5851.92808

    Article  Google Scholar 

  16. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. CoRR abs/1904.02701 (2019). http://arxiv.org/abs/1904.02701

  17. Plissiti, M., Nikou, C., Charchanti, A.: Automated detection of cell nuclei in pap smear images using morphological reconstruction and clustering. IEEE Trans. Inf. Technol. Biomed. 15, 233–241 (2010). https://doi.org/10.1109/TITB.2010.2087030. A publication of the IEEE Engineering in Medicine and Biology Society

  18. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. CoRR abs/1506.02640 (2015). http://arxiv.org/abs/1506.02640

  19. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. CoRR abs/1612.08242 (2016). http://arxiv.org/abs/1612.08242

  20. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. CoRR abs/1804.02767 (2018). http://arxiv.org/abs/1804.02767

  21. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497 (2015). http://arxiv.org/abs/1506.01497

  22. Sharma, B., Mangat, K.K.: Various techniques for classification and segmentation of cervical cell images - a review. Int. J. Comput. Appl. 147, 16–20 (2016)

    Google Scholar 

  23. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Seventh International Conference on Document Analysis and Recognition. Proceedings, pp. 958–963 (2003)

    Google Scholar 

  24. Sivaprakasam, A.S., Ealai Rengasari, N.: Segmentation and classification of cervical cytology images using morphological and statistical operations. ICTACT J. Image Video Process. 07, 1445–1455 (2017). https://doi.org/10.21917/ijivp.2017.0208

    Article  Google Scholar 

  25. Sornapudi, S., et al.: Deep learning nuclei detection in digitized histology images by superpixels. J. Pathol. Inf. 9, 5 (2018)

    Article  Google Scholar 

  26. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-ResNet and the impact of residual connections on learning. CoRR abs/1602.07261 (2016). http://arxiv.org/abs/1602.07261

  27. Tsai, M.H., Chan, Y.K., Lin, Z.Z., Yang Mao, S.F., Huang, P.C.: Nucleus and cytoplast contour detector of cervical smear image. Pattern Recogn. Lett. 29, 1441–1453 (2008). https://doi.org/10.1016/j.patrec.2008.02.024

    Article  Google Scholar 

  28. Wang, F., et al.: Residual attention network for image classification. CoRR abs/1704.06904 (2017). http://arxiv.org/abs/1704.06904

  29. William, W., Ware, J., Habinka, A., Obungoloch, J.: A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images. Comput. Methods Programs Biomed. 164 (2018). https://doi.org/10.1016/j.cmpb.2018.05.034

  30. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  31. Xiang, Y., Sun, W., Pan, C., Yan, M., Yin, Z., Liang, Y.: A novel automation-assisted cervical cancer reading method based on convolutional neural network. Biocybern. Biomed. Eng. 40(2), 611–623 (2020)

    Article  Google Scholar 

  32. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. CoRR abs/1611.05431 (2016). http://arxiv.org/abs/1611.05431

  33. Zagoruyko, S., Komodakis, N.: Wide residual networks. CoRR abs/1605.07146 (2016). http://arxiv.org/abs/1605.07146

  34. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  35. Zhang, C., et al.: DCCL: a benchmark for cervical cytology analysis. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 63–72. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_8

    Chapter  Google Scholar 

  36. Zhang, L., et al.: Automation-assisted cervical cancer screening in manual liquid-based cytology with hematoxylin and eosin staining. Cytometry Part A J. Int. Soc. Anal. Cytol. 85 (2014). https://doi.org/10.1002/cyto.a.22407

  37. Zhang, L., Lu, L., Nogues, I., Summers, R.M., Liu, S., Yao, J.: DeepPap: deep convolutional networks for cervical cell classification. IEEE J. Biomed. Health Inf. 21(6), 1633–1643 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Menglu Zhang or Linlin Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, M., Shen, L. (2021). Cervical Cell Detection Benchmark with Effective Feature Representation. In: Sun, F., Liu, H., Fang, B. (eds) Cognitive Systems and Signal Processing. ICCSIP 2020. Communications in Computer and Information Science, vol 1397. Springer, Singapore. https://doi.org/10.1007/978-981-16-2336-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2336-3_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2335-6

  • Online ISBN: 978-981-16-2336-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics