Abstract
As deep convolutional neural networks have shown promising performance in medical image analysis, a number of deep learning based cervical cytology diagnosis methods were developed in recent years. Most studies have achieved available performance in cell classification or segmentation, however, there still exists some challenges for effective screening. Cervical cell detection is a more significant task in cytology diagnosis for cancers. In this paper, we propose a detection framework with effective feature representation for automatic cervical cytology analysis. We employ elastic transformation and a channel and spacial attention module to obtain a more powerful feature extractor. The experimental results demonstrate the efficiency and accuracy improved by our effective feature representation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alom, M.Z., Yakopcic, C., Taha, T., Asari, V.: Microscopic nuclei classification, segmentation and detection with improved deep convolutional neural network (DCNN) approaches, November 2018
Bamford, P., Lovell, B.: A water immersion algorithm for cytological image segmentation, March 1998
Bergmeir, C., Garcia-Silvente, M., Benítez, J.: Segmentation of cervical cell nuclei in high-resolution microscopic images: a new algorithm and a web-based software framework. Comput. Methods Programs Biomed. 107, 497–512 (2012). https://doi.org/10.1016/j.cmpb.2011.09.017
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. CoRR abs/1712.00726 (2017). http://arxiv.org/abs/1712.00726
Chen, K., Zhang, N., Powers, L., Roveda, J.: Cell nuclei detection and segmentation for computational pathology using deep learning, p. 12, April 2019. https://doi.org/10.22360/springsim.2019.msm.012
Genctav, A., Aksoy, S.: Segmentation of cervical cell images, pp. 2399–2402, August 2010. https://doi.org/10.1109/ICPR.2010.587
Genctav, A., Aksoy, S., Onder, S.: Unsupervised segmentation and classification of cervical cell images. Pattern Recogn. 45, 4151–4168 (2012). https://doi.org/10.1016/j.patcog.2012.05.006
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. CoRR abs/1709.01507 (2017). http://arxiv.org/abs/1709.01507
Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: Pap-smear benchmark data for pattern classification. In: Nature inspired Smart Information Systems (NiSIS 2005), pp. 1–9 (2005)
Khamparia, A., Gupta, D., de Albuquerque, V.H.C., Sangaiah, A.K., Jhaveri, R.H.: Internet of health things-driven deep learning system for detection and classification of cervical cells using transfer learning. J. Supercomput. 76(11), 8590–8608 (2020). https://doi.org/10.1007/s11227-020-03159-4
Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. CoRR abs/1708.02002 (2017). http://arxiv.org/abs/1708.02002
Liu, W., et al.: SSD: single shot multibox detector. CoRR abs/1512.02325 (2015). http://arxiv.org/abs/1512.02325
Mishra, G., Pimple, S., Shastri, S.: An overview of prevention and early detection of cervical cancers. Indian J. Med. Paediatr. Oncol. 32(3), 125–132 (2011). https://doi.org/10.4103/0971-5851.92808
Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. CoRR abs/1904.02701 (2019). http://arxiv.org/abs/1904.02701
Plissiti, M., Nikou, C., Charchanti, A.: Automated detection of cell nuclei in pap smear images using morphological reconstruction and clustering. IEEE Trans. Inf. Technol. Biomed. 15, 233–241 (2010). https://doi.org/10.1109/TITB.2010.2087030. A publication of the IEEE Engineering in Medicine and Biology Society
Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. CoRR abs/1506.02640 (2015). http://arxiv.org/abs/1506.02640
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. CoRR abs/1612.08242 (2016). http://arxiv.org/abs/1612.08242
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. CoRR abs/1804.02767 (2018). http://arxiv.org/abs/1804.02767
Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497 (2015). http://arxiv.org/abs/1506.01497
Sharma, B., Mangat, K.K.: Various techniques for classification and segmentation of cervical cell images - a review. Int. J. Comput. Appl. 147, 16–20 (2016)
Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Seventh International Conference on Document Analysis and Recognition. Proceedings, pp. 958–963 (2003)
Sivaprakasam, A.S., Ealai Rengasari, N.: Segmentation and classification of cervical cytology images using morphological and statistical operations. ICTACT J. Image Video Process. 07, 1445–1455 (2017). https://doi.org/10.21917/ijivp.2017.0208
Sornapudi, S., et al.: Deep learning nuclei detection in digitized histology images by superpixels. J. Pathol. Inf. 9, 5 (2018)
Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-ResNet and the impact of residual connections on learning. CoRR abs/1602.07261 (2016). http://arxiv.org/abs/1602.07261
Tsai, M.H., Chan, Y.K., Lin, Z.Z., Yang Mao, S.F., Huang, P.C.: Nucleus and cytoplast contour detector of cervical smear image. Pattern Recogn. Lett. 29, 1441–1453 (2008). https://doi.org/10.1016/j.patrec.2008.02.024
Wang, F., et al.: Residual attention network for image classification. CoRR abs/1704.06904 (2017). http://arxiv.org/abs/1704.06904
William, W., Ware, J., Habinka, A., Obungoloch, J.: A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images. Comput. Methods Programs Biomed. 164 (2018). https://doi.org/10.1016/j.cmpb.2018.05.034
Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)
Xiang, Y., Sun, W., Pan, C., Yan, M., Yin, Z., Liang, Y.: A novel automation-assisted cervical cancer reading method based on convolutional neural network. Biocybern. Biomed. Eng. 40(2), 611–623 (2020)
Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. CoRR abs/1611.05431 (2016). http://arxiv.org/abs/1611.05431
Zagoruyko, S., Komodakis, N.: Wide residual networks. CoRR abs/1605.07146 (2016). http://arxiv.org/abs/1605.07146
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Zhang, C., et al.: DCCL: a benchmark for cervical cytology analysis. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 63–72. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_8
Zhang, L., et al.: Automation-assisted cervical cancer screening in manual liquid-based cytology with hematoxylin and eosin staining. Cytometry Part A J. Int. Soc. Anal. Cytol. 85 (2014). https://doi.org/10.1002/cyto.a.22407
Zhang, L., Lu, L., Nogues, I., Summers, R.M., Liu, S., Yao, J.: DeepPap: deep convolutional networks for cervical cell classification. IEEE J. Biomed. Health Inf. 21(6), 1633–1643 (2017)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, M., Shen, L. (2021). Cervical Cell Detection Benchmark with Effective Feature Representation. In: Sun, F., Liu, H., Fang, B. (eds) Cognitive Systems and Signal Processing. ICCSIP 2020. Communications in Computer and Information Science, vol 1397. Springer, Singapore. https://doi.org/10.1007/978-981-16-2336-3_38
Download citation
DOI: https://doi.org/10.1007/978-981-16-2336-3_38
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-2335-6
Online ISBN: 978-981-16-2336-3
eBook Packages: Computer ScienceComputer Science (R0)