[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Improved Firefly Algorithm for Software Defect Prediction

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2020)

Abstract

Software defect prediction (SDP) plays an important role to help software development, where various advanced intelligence algorithms but no firefly algorithm (FA) are used to improve the prediction accuracy within a project or across projects. Current FA faces the problem of many unnecessary movements which reduces its efficiency of searching for an optimal solution. Therefore, an improved multiple swarms with different strategies firefly algorithm is proposed, named MSFA. The key principle of MSFA is to divide the swarm into three groups, where each group plays a different role to balance exploration and exploitation. Experimental studies were tested on CEC 2013 and SDP. The test results on CEC 2013 prove that MSFA achieves a high balance between the exploration and the exploitation. The test results conducted on SDP show that MSFA has a higher prediction accuracy, but much less computation cost compared with other FA variants.

Supported by the National Natural Science Foundation of China (No. 61763019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishop, C.-M., Nasrabadi, N.-M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    Google Scholar 

  2. Kohavi, R.: The power of decision tables. In: 8th European Conference on Machine Learning (ECML95), pp. 174–189. Heraklion, Crete, Greece (1995)

    Google Scholar 

  3. Lessmann, S., Baesens, B., Mues, C.: Benchmarking classification models for software defect prediction: a proposed framework and novel findings. IEEE. Trans. Softw. Eng. 34(4), 485–496 (2008)

    Article  Google Scholar 

  4. Okutan, A., Yıldız, O.T.: Software defect prediction using Bayesian networks. Empirical Softw. Eng. 19(1), 154–181 (2012). https://doi.org/10.1007/s10664-012-9218-8

    Article  Google Scholar 

  5. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: 1995 IEEE International Conference on Neural Networks, pp. 1942–1948, Nagoya, Japan (1995)

    Google Scholar 

  6. Peng, H., Guo, Z.-L., Deng, C.-S., Wu, Z.-J.: Enhancing differential evolution with random neighbors based strategy. Comput. Sci. 26(1), 501–511 (2018)

    Article  MathSciNet  Google Scholar 

  7. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Bell, J.E., McMullen, P.-R.: Ant colony optimization techniques for the vehicle routing problem. Adv. Eng. 18(1), 41–48 (2004)

    Google Scholar 

  9. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04944-6_14

    Chapter  Google Scholar 

  10. Peng, H., Deng, C.-S., Wu, Z.-J.: SPBSO: self-adaptive brain storm optimization algorithm with pbest guided step-size. Int. Fuzzy Syst. 36(6), 5423–5434 (2019)

    Google Scholar 

  11. Fister, Jr., I., Fister, I., Yang, X.-S., Brest, J., : A comprehensive review of firefly algorithms. Swarm Evol. Comput. 13, 34–46 (2013)

    Google Scholar 

  12. Ghatasheh, N., Faris, H., Aljarah, I., Al-Sayyed, R.-M.: Optimizing software effort estimation models using firefly algorithm. Softw. Engi. Appl. 8, 133–142 (2018)

    Article  Google Scholar 

  13. Wang, H., Wang, W., Sun, H., Rahnamayan, S.: Firefly algorithm with random attraction. Int. J. Bio Inspired Comput. 8(1), 33–41 (2016)

    Article  Google Scholar 

  14. Fister, Jr., I., Yang, X.-S., Fister, I., Brest, J.: Memetic firefly algorithm for combinatorial optimization. arXiv preprint arXiv:1204.5165 (2012)

  15. Zhou, X., Wu, Z., Wang, H., Rahnamayan, S.: Enhancing differential evolution with role assignment scheme. Soft Comput. 18(11), 2209–2225 (2013). https://doi.org/10.1007/s00500-013-1195-3

    Article  Google Scholar 

  16. Chen, J.-Q., Deng, C.-S., Peng, H., Tan, Y., Zhou, X., Wang, F.: Enhanced brain storm optimization with role-playing strategy. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 1132–1139. Wellington, New Zealand (2019)

    Google Scholar 

  17. Yu, S., Zhu, S., Ma, Y., Mao, D.: Enhancing firefly algorithm using generalized opposition-based learning. Computing 97(7), 741–754 (2015). https://doi.org/10.1007/s00607-015-0456-7

    Article  MathSciNet  MATH  Google Scholar 

  18. Peng, H., Peng, S.-X.: Gaussian bare-bones firefly algorithm. Int. J. Innova. Comput. Appl. 10(1), 35–42 (2019)

    Article  Google Scholar 

  19. Lv, L., Zhao, J.: The firefly algorithm with Gaussian disturbance and local search. J. Signal Process. Syst. 90(8), 1123–1131 (2018)

    Article  Google Scholar 

  20. Wang, C.-F., Song, W.-X.: A novel firefly algorithm based on gender difference and its convergence. Appl. Soft. Comput. 80, 107–124 (2019)

    Article  Google Scholar 

  21. Aydilek, I.B.: A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl. Soft. Comput. 66, 232–249 (2018)

    Google Scholar 

  22. Li, G., Liu, P., Le, C., Zhou, B.: A novel hybrid meta-heuristic algorithm based on the cross-entropy method and firefly algorithm for global optimization. Entropy 21(5), 494 (2019)

    Google Scholar 

  23. Tilahun, S.L., Ngnotchouye, J.M.T., Hamadneh, N.N.: Continuous versions of firefly algorithm: a review. Artif. Intell. Rev. 51(3), 445–492 (2017). https://doi.org/10.1007/s10462-017-9568-0

    Article  Google Scholar 

  24. Dey, N.: Applications of Firefly Algorithm and Its Variants. Springer, Singapore (2020)

    Book  Google Scholar 

  25. Patwal, R.-S., Narang, N., Garg, H.: A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units. Energy 142, 822–837 (2018)

    Article  Google Scholar 

  26. Wang, J.: Firefly algorithm with dynamic attractiveness model and its application on wireless sensor networks. Int. J. Wire. Mob. Comput. 13(3), 223–231 (2017)

    Article  Google Scholar 

  27. Wang, H., Cui, Z., Sun, H., Rahnamayan, S., Yang, X.-S.: Randomly attracted firefly algorithm with neighborhood search and dynamic parameter adjustment mechanism. Soft Comput. 21(18), 5325–5339 (2016). https://doi.org/10.1007/s00500-016-2116-z

    Article  Google Scholar 

  28. Liang, J., Qu, B., Suganthan, P., Hernández-Díaz, A.-G.: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Comput. Int. Labo, Zhengzhou. Uni, Zhengzhou, CN. Nanyang. Techn. Uni, Singapore, Technical report. 201212(34), 281–295 (2013)

    Google Scholar 

  29. Peng, He., Li, B., Liu, X., Chen, J., Ma, Y.T.: An empirical study on software defect prediction with a simplified metric set. Int. J. Inf. Softw. Technol. 59, 170–190 (2015)

    Google Scholar 

  30. Yang, X., Tang, K., Yao, X.: A learning-to-rank algorithm for constructing defect prediction models. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 167–175. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32639-4_21

    Chapter  Google Scholar 

  31. Weyuker, E., Ostrand, T.-J., Bell, R.-M.: Comparing the effectiveness of several modeling methods for fault prediction. Int. J. Empiric Softw. Eng. 15(3), 277–295 (2010)

    Article  Google Scholar 

  32. Peng, H., Deng, C., Wu, Z.: Best neighbor-guided artificial bee colony algorithm for continuous optimization problems. Soft Comput. 23(18), 8723–8740 (2018). https://doi.org/10.1007/s00500-018-3473-6

    Article  Google Scholar 

  33. D’Ambros, M., Lanza, M., Robbes, R.: Evaluating defect prediction approaches: a benchmark and an extensive comparison. Int. J. Empiric Softw. Eng. 17, 531–577 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianglin Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, L., Ben, K., Peng, H., Zhang, X., Wang, F. (2021). An Improved Firefly Algorithm for Software Defect Prediction. In: He, K., Zhong, C., Cai, Z., Yin, Y. (eds) Theoretical Computer Science. NCTCS 2020. Communications in Computer and Information Science, vol 1352. Springer, Singapore. https://doi.org/10.1007/978-981-16-1877-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1877-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1876-5

  • Online ISBN: 978-981-16-1877-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics