Abstract
The world is growing smarter with technology-driven applications in assisting lifestyle of humans. Machine learning has predominantly helped businesses in continuously learning and evaluating human likes and dislikes. Today, deep neural networks have grabbed the attention of many researchers in developing highly complicated yet effective models for prediction and data analytics. Recommender systems being one of the applications of machine learning has caught customer attention especially in the retail and hospitality sector. After a recommendation engine is built, it is evaluated in different tangents like accuracy, recall, etc. However, there is a serious need to shift the research focus to the user experience and design aspect while using such recommender systems. This paper conducts a survey and based on the survey results, a novel conceptualized model labelled ‘Cognitive Dynamic Design Engine’ (CDDE) is proposed. This model will help businesses to understand customer mindset, perception and usability parameters while presenting recommendations to their customers. This model is proposed to run on top the deep neural network model that is constructed for generating recommendations. This survey is collected from masses of urban and rural parts of a geographical zone. The results of the study show that user experience and aesthetics of the recommendation given to a user inevitably have a direct effect on users buying decisions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
J. Sobecki, Implementations of web-based recommender systems using hybrid methods. Int. J. Comput. Sci. Appl. 3 (2006)
D.-K. Chae, J.A. Shin, S.-W. Kim, Collaborative adversarial autoencoders: an effective collaborative filtering model under the GAN framework. IEEE Access 7, 37650–37663 (2019)
A. Da’u, N. Salim, Sentiment-aware deep recommender system with neural attention networks. IEEE Access 7, 45472–45484 (2019). https://doi.org/10.1109/ACCESS.2019.2907729
H.M. Ismail, B. Belkhouche, S. Harous, Framework for personalized content recommendations to support informal learning in massively diverse information wikis. IEEE Access 7, 172752–172773 (2019). https://doi.org/10.1109/AC-CESS.2019.2956284
F. Maxwell Harper, J.A. Konstan, The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TiiS) 5(4), Article 19, 19 pages (2015). https://doi.org/10.1145/2827872
J. Zhang, X. Lu, A multi-trans matrix factorization model with improved time weight in temporal recommender systems. IEEE Access 8, 2408–2416 (2020). https://doi.org/10.1109/ACCESS.2019.2960540
M. Almaghrabi, G. Chetty, A deep learning based collaborative neural network framework for recommender system, in 2018 International Conference on Machine Learning and Data Engineering (iCMLDE), Sydney, Australia, 2018, pp. 121–127. https://doi.org/10.1109/iCMLDE.2018.00031
D. Sanchez-Moreno, Y. Zheng, M.N. Moreno-García, Incorporating time dynamics and implicit feedback into music recommender systems, in 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), Santiago, 2018, pp. 580–585. https://doi.org/10.1109/WI.2018.00-34
Z. Ying, C. Caixia, G. Wen, L. Xiaogang, Impact of recommender systems on unplanned purchase behaviours in e-commerce, in 2018 5th International Conference on Industrial Engineering and Applications (ICIEA), Singapore, 2018, pp. 21–30. https://doi.org/10.1109/IEA.2018.8387066
M. Jallouli, S. Lajmi, I. Amous, Designing recommender system: conceptual framework and practical implementation, in International Conference on Knowledge Based and Intelligent Information and Engineering Systems, KES2017, Marseille, France, 6–8 Sept 2017
M. Gao, J. Zhang, J. Yu, J. Li, J. Wen, Q. Xiong, Recommender systems based on generative adversarial networks: a problem-driven perspective. arXiv preprint arXiv:2003.02474
B.P. Knijnenburg, M.C. Willemsen, Z. Gantner et al., Explaining the user experience of recommender systems. User Model. User-Adapt. Interact. 22, 441–504 (2012). https://doi.org/10.1007/s11257-011-9118-4
Y. Chen, Interface and interaction design for group and social recommender systems, in Proceedings of the Fifth ACM Conference on Recommender systems (Rec-Sys’11) (Association for Computing Machinery, New York, NY, USA, 2011), pp. 363–366. https://doi.org/10.1145/2043932.2044007
T. Vijayakumar, R. Vinothkanna, Mellowness detection of dragon fruit using deep learning strategy. J. Innov. Image Process. (JIIP) 2(01), 35–43 (2020)
Acknowledgements
This work is partially supported by ‘Vidyalankar Institute of Technology’, Wadala, Mumbai, India, under the scheme of ‘Higher Studies Sponsorship Policy’, 2020.
Conflict of Interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Dhruv, A., Bakal, J.W. (2022). Investigating the Role of User Experience and Design in Recommender Systems: A Pragmatic Review. In: Shakya, S., Bestak, R., Palanisamy, R., Kamel, K.A. (eds) Mobile Computing and Sustainable Informatics. Lecture Notes on Data Engineering and Communications Technologies, vol 68. Springer, Singapore. https://doi.org/10.1007/978-981-16-1866-6_11
Download citation
DOI: https://doi.org/10.1007/978-981-16-1866-6_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-1865-9
Online ISBN: 978-981-16-1866-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)