[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Camouflaged Object Segmentation with Transformer

  • Conference paper
  • First Online:
Cognitive Systems and Information Processing (ICCSIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1515))

Included in the following conference series:

Abstract

The Vision Transformer (ViT) [6] directly applies a Transformer architecture to image classification and achieves an impressive result compared with convolutional networks. This paper presents a new ViT-base camouflaged object segmentation method, called COS Transformer, which aims to identify and segment objects concealed in a complex environment. The high intrinsic similarities between object and surrounding makes the task challenging than salient object detection. Most recent camouflaged object segmentation methods(e.g., EGNet [29], PraNet [10] and SINet [9]) adopt convolutional network with an encoder-decoder architecture and focused on increasing the receptive field, which is limited by the depth of the network. In camouflaged object segmentation (COS) task, the camouflage is mainly relied on contrast of the whole surrounding instead of the local information. We introduce transformer with global context awareness in this paper, for self-attention allowing COS Transformer to aggregate features globally even in the lowest layers. Specifically, the architecture is composed of a transformer-based encoder and a multi-layers feature aggregation refinement module. After training on the COD10K [9] dataset, COS Transformer attains excellent results compared to state-of-the-art convolutional networks, e.g. 11.7% improvement of \(E_\phi \) [8] on the COD10K contrasted to SINet.

X. Wang—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  2. Chen, K., et al.: Hybrid task cascade for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4974–4983 (2019)

    Google Scholar 

  3. Contributors, M.: MMSegmentation: Openmmlab semantic segmentation toolbox and benchmark (2020). https://github.com/open-mmlab/mmsegmentation

  4. Cordonnier, J.B., Loukas, A., Jaggi, M.: On the relationship between self-attention and convolutional layers (2019)

    Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  6. Dosovitskiy, A., et al.: An image is worth \(16\times 16\) words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4548–4557 (2017)

    Google Scholar 

  8. Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint arXiv:1805.10421 (2018)

  9. Fan, D.P., Ji, G.P., Sun, G., Cheng, M.M., Shen, J., Shao, L.: Camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2777–2787 (2020)

    Google Scholar 

  10. Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part VI. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

    Chapter  Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  12. Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring R-CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6409–6418 (2019)

    Google Scholar 

  13. Le, T.N., Nguyen, T.V., Nie, Z., Tran, M.T., Sugimoto, A.: Anabranch network for camouflaged object segmentation. Comput. Vis. Image Underst. 184, 45–56 (2019)

    Article  Google Scholar 

  14. Hou, J.Y.Y.H.W., Li, J.: Detection of the mobile object with camouflage color under dynamic background based on optical flow. Procedia Eng. 15, 2201–2205 (2011)

    Article  Google Scholar 

  15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  16. Liu, N., Han, J., Yang, M.H.: PiCANet: learning pixel-wise contextual attention for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3089–3098 (2018)

    Google Scholar 

  17. Margolin, R., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2014)

    Google Scholar 

  18. Mei, H., Ji, G.P., Wei, Z., Yang, X., Wei, X., Fan, D.P.: Camouflaged object segmentation with distraction mining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8772–8781 (2021)

    Google Scholar 

  19. Pan, Y., Chen, Y., Fu, Q., Zhang, P., Xu, X.: Study on the camouflaged target detection method based on 3D convexity. Mod. Appl. Sci. 5(4), 152–157 (2011)

    Article  Google Scholar 

  20. Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: BASNet: boundary-aware salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7479–7489 (2019)

    Google Scholar 

  21. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  22. Skurowski, P., Abdulameer, H., Błaszczyk, J., Depta, T., Kornacki, A., Kozieł, P.: Animal camouflage analysis: Chameleon database. 2(6), 7 (2018). Unpublished Manuscript

    Google Scholar 

  23. Thayer, G.: Concealing-Coloration in the Animal Kingdom: An Exposition of the Laws of Disguise Through Color and Pattern: Being a Summary of Abbott H. Thayer’s. Macmillan, New York (1909)

    Book  Google Scholar 

  24. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. arXiv preprint arXiv:2012.12877 (2020)

  25. Wang, W., Shen, J., Cheng, M.M., Shao, L.: An iterative and cooperative top-down and bottom-up inference network for salient object detection. In: CVPR19 (2019)

    Google Scholar 

  26. Wei, J., Wang, S., Huang, Q.: F\(^3\)net: fusion, feedback and focus for salient object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12321–12328 (2020)

    Google Scholar 

  27. Wu, Z., Su, L., Huang, Q.: Cascaded partial decoder for fast and accurate salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3907–3916 (2019)

    Google Scholar 

  28. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  29. Zhao, J.X., Liu, J.J., Fan, D.P., Cao, Y., Yang, J., Cheng, M.M.: EGNet: edge guidance network for salient object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8779–8788 (2019)

    Google Scholar 

  30. Zhao, T., Wu, X.: Pyramid feature attention network for saliency detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3085–3094 (2019))

    Google Scholar 

  31. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6881–6890 (2021)

    Google Scholar 

  32. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuchun Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Wang, X., Sun, F., Song, Y. (2022). Camouflaged Object Segmentation with Transformer. In: Sun, F., Hu, D., Wermter, S., Yang, L., Liu, H., Fang, B. (eds) Cognitive Systems and Information Processing. ICCSIP 2021. Communications in Computer and Information Science, vol 1515. Springer, Singapore. https://doi.org/10.1007/978-981-16-9247-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9247-5_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9246-8

  • Online ISBN: 978-981-16-9247-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics