[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Hybrid ANFIS-PSO Model for Monthly Precipitation Forecasting

  • Conference paper
  • First Online:
Evolution in Computational Intelligence

Abstract

Precipitation forecasting is a key constituent of hydrological cycle and is of principal significance in planning and management of water resources, in addition to arrangement of irrigational practices. This study focuses on assessing the potential of hybrid ANFIS-PSO (integrating Adaptive Neuro-Fuzzy Inference System and Particle Swarm Optimization) and simple ANFIS models for precipitation forecasting at Nuapada district of Odisha, India. Evaluations of model performances were studied based on different statistical indices. Results revealed that hybrid ANFIS-PSO model provided superior accurateness compared to standalone ANFIS. In addition, analysis of results revealed that integrating optimisation algorithm with ANFIS can enhance its performance in monthly precipitation forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Choubin, B., Malekian, A., Samadi, S., Khalighi-Sigaroodi, S., Sajedi-Hosseini, F.: An ensemble forecast of semi-arid rainfall using large-scale climate predictors. Meteorol. Appl. 24(3), 376–386 (2017)

    Article  Google Scholar 

  2. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39–43). IEEE (1995)

    Google Scholar 

  3. Jalalkamali, A.: Using of hybrid fuzzy models to predict spatiotemporal groundwater quality parameters. Earth Sci. Inf. 8(4), 885–894 (2015)

    Article  Google Scholar 

  4. Jang, J.S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  5. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]. IEEE Trans. Autom. Control 42(10), 1482–1484 (1997)

    Article  Google Scholar 

  6. Jeong, C., Shin, J.Y., Kim, T., Heo, J.H.: Monthly precipitation forecasting with a neuro-fuzzy model. Water Resour. Manage 26(15), 4467–4483 (2012)

    Article  Google Scholar 

  7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol. 4, pp. 1942–1948. (1995)

    Google Scholar 

  8. Kisi, O., Sanikhani, H.: Prediction of long-term monthly precipitation using several soft computing methods without climatic data. Int. J. Climatol. 35(14), 4139–4150 (2015)

    Article  Google Scholar 

  9. Liu, Z., Zhang, D., Peng, W.: A Novel ANFIS-PSO Network for forecasting oil flocculated asphaltene weight percentage at wide range of operation conditions. Pet. Sci. Technol. 36(14), 1044–1050 (2018)

    Article  Google Scholar 

  10. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    Article  Google Scholar 

  11. Mohammadi, K., Shamshirband, S., Petković, D., Yee, L., Mansor, Z.: Using ANFIS for selection of more relevant parameters to predict dew point temperature. Appl. Therm. Eng. 96, 311–319 (2016)

    Article  Google Scholar 

  12. Mohammadi, K., Shamshirband, S., Tong, C.W., Alam, K.A., Petković, D.: Potential of adaptive neuro-fuzzy system for prediction of daily global solar radiation by day of the year. Energy Convers. Manage. 93, 406–413 (2015)

    Article  Google Scholar 

  13. Mohanta, N.R., Patel, N., Beck, K., Samantaray, S., Sahoo, A.: Efficiency of river flow prediction in river using Wavelet-CANFIS: a case study. In: Intelligent Data Engineering and Analytics (pp. 435–443). Springer, Singapore (2021a)

    Google Scholar 

  14. Mohanta, N.R., Biswal, P., Kumari, S.S., Samantaray, S., Sahoo, A.: Estimation of sediment load using adaptive neuro-fuzzy inference system at indus river basin, India. In: Intelligent Data Engineering and Analytics (pp. 427–434). Springer, Singapore (2021b)

    Google Scholar 

  15. Nguyen, Q.H., Ly, H.B., Le, T.T., Nguyen, T.A., Phan, V.H., Tran, V.Q., Pham, B.T.: Parametric investigation of particle swarm optimization to improve the performance of the adaptive neuro-fuzzy inference system in determining the buckling capacity of circular opening steel beams. Materials 13(10), 2210 (2020)

    Article  Google Scholar 

  16. Sahoo, A., Samantaray, S., Bankuru, S., Ghose, D.K.: Prediction of flood using adaptive neuro-fuzzy inference systems: a case study. In: Smart Intelligent Computing and Applications (pp. 733–739). Springer, Singapore (2020)

    Google Scholar 

  17. Samantaray, S., Sahoo, A., Ghose, D.K.: Infiltration loss affects toward groundwater fluctuation through CANFIS in arid watershed: a case study. In: Smart Intelligent Computing and Applications (pp. 781–789). Springer, Singapore (2020a)

    Google Scholar 

  18. Samantaray, S., Sahoo, A., Ghose, D.K.: Prediction of sedimentation in an arid watershed using BPNN and ANFIS. In: ICT Analysis and Applications (pp. 295–302). Springer, Singapore (2020b)

    Google Scholar 

  19. Shamshirband, S., Gocić, M., Petković, D., Saboohi, H., Herawan, T., Kiah, M.L.M., Akib, S.: Soft-computing methodologies for precipitation estimation: a case study. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 8(3), 1353–1358 (2014)

    Article  Google Scholar 

  20. Sridharam, S., Sahoo, A., Samantaray, S., Ghose, D.K.: Assessment of flow discharge in a river basin through CFBPNN, LRNN and CANFIS. In: Communication Software and Networks (pp. 765–773). Springer, Singapore (2021)

    Google Scholar 

  21. Yaseen, Z.M., Ebtehaj, I., Kim, S., Sanikhani, H., Asadi, H., Ghareb, M.I., Bonakdari, H., Wan Mohtar, W.H.M., Al-Ansari, N., Shahid, S. Novel hybrid data-intelligence model for forecasting monthly rainfall with uncertainty analysis. Water 11(3), 502 (2019)

    Google Scholar 

  22. Zanganeh, M.: Improvement of the ANFIS-based wave predictor models by the Particle Swarm Optimization. J. Ocean Eng. Sci. 5(1), 84–99 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Samantaray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaudhury, S., Samantaray, S., Sahoo, A., Bhagat, B., Biswakalyani, C., Satapathy, D.P. (2022). Hybrid ANFIS-PSO Model for Monthly Precipitation Forecasting. In: Bhateja, V., Tang, J., Satapathy, S.C., Peer, P., Das, R. (eds) Evolution in Computational Intelligence. Smart Innovation, Systems and Technologies, vol 267. Springer, Singapore. https://doi.org/10.1007/978-981-16-6616-2_33

Download citation

Publish with us

Policies and ethics