[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Combining Local Binary Pattern and Speeded-Up Robust Feature for Content-Based Image Retrieval

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1178))

Included in the following conference series:

Abstract

Large number of digital image libraries containing huge amount of images have made the task of searching and retrieval tedious. Content-Based Image Retrieval (CBIR) is a field which finds solution to this problem. This paper proposes CBIR a technique which extracts interest points from texture feature at multiple resolutions of image. Local Binary Pattern (LBP) has been used to perform texture feature extraction and interest points are gathered through Speeded-Up Robust Feature (SURF) descriptors. The multiresolution decomposition of image is done using Discrete Wavelet Transform (DWT). DWT coefficients of gray scale image are computed followed by computation of LBP codes of resulting DWT coefficients. The interest points from texture image are then gathered by computing SURF descriptors of resulting LBP codes. Finally, feature vector for retrieval is constructed through Gray-Level Co-occurrence Matrix (GLCM) which is used to retrieve visually similar images. The performance of the proposed method has been tested on Corel-1 K dataset and measured in terms of precision and recall. The experimental results demonstrate that the proposed method performs better than some of the other state-of-the-art CBIR techniques in terms of precision and recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dutta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas influences and trends of the new age. ACM Comput. Surv. 40(2), 1–60 (2008)

    Article  Google Scholar 

  2. Smith, J.R., Chang, S.F.: Tools and Techniques for Color Image Retrieval. Electronic Imaging, Science and Technology. International Society for Optics and Photonics 2670, 426–437 (1996)

    Google Scholar 

  3. Wang, X., Yu, Y., Yang, H.: An effective image retrieval scheme using color, texture and shape features. Comput. Stand. Interfaces 33(1), 59–68 (2011)

    Article  Google Scholar 

  4. Srivastava, P., Binh, N.T., Khare, A.: Content-based image retrieval using moments. In: Proceedings of Context-Aware Systems and Applications, Phu Quoc, Vietnam, pp. 228–237 (2013)

    Google Scholar 

  5. Srivastava, P., Binh, N.T., Khare, A.: Content-based image retrieval using moments of local ternary pattern. Mob. Netw. Appl. 19, 618–625 (2014)

    Article  Google Scholar 

  6. Youssef, S.M.: ICTEDCT-CBIR: integrating curvelet transform with enhanced dominant colors extraction and texture analysis for efficient content-based image retrieval. Comput. Electr. Eng. 38, 1358–1376 (2012)

    Article  Google Scholar 

  7. Srivastava, P., Khare, A.: Integration of wavelet transform, local binary pattern, and moments for content-based image retrieval. J. Vis. Commun. Image Represent. 42(1), 78–103 (2017)

    Article  Google Scholar 

  8. Liu, G.H., Yang, J.Y.: Content-based image retrieval using color difference histogram. Pattern Recogn. 46(1), 188–198 (2013)

    Article  Google Scholar 

  9. Zhang, M., Zhang, K., Feng, Q., Wang, J., Jun, K., Lu, Y.: A novel image retrieval method based on hybrid information descriptors. J. Vis. Commun. Image Represent. 25(7), 1574–1587 (2014)

    Article  Google Scholar 

  10. Wang, X., Wang, Z.: A novel method for image retrieval based on structure elements descriptor. J. Vis. Commun. Image Represent. 24(1), 63–74 (2013)

    Article  Google Scholar 

  11. Liu, G., Zhang, L., Hou, Y., Yang, J.: Image retrieval based on multi-texton histogram. Pattern Recogn. 43(7), 2380–2389 (2008)

    Article  Google Scholar 

  12. Liu, G., Li, Z., Zhang, L., Xu, Y.: Image retrieval based on microstructure descriptor. Pattern Recogn. 44(9), 2123–2133 (2011)

    Article  Google Scholar 

  13. Feng, L., Wu, J., Liu, S., Zhang, H.: Global correlation descriptor: a novel image representation for image retrieval. J. Vis. Commun. Image Represent. 33, 104–114 (2015)

    Article  Google Scholar 

  14. Xia, Yu., Wan, S., Jin, P., Yue, L.: Multi-scale local spatial binary patterns for content-based image retrieval. In: Yoshida, T., Kou, G., Skowron, A., Cao, J., Hacid, H., Zhong, N. (eds.) AMT 2013. LNCS, vol. 8210, pp. 423–432. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02750-0_45

    Chapter  Google Scholar 

  15. Srivastava, P., Khare, A.: Content-based image retrieval using multiscale local spatial binary Gaussian co-occurrence pattern. In: Hu, Y.-C., Tiwari, S., Mishra, Krishn K., Trivedi, Munesh C. (eds.) Intelligent Communication and Computational Technologies. LNNS, vol. 19, pp. 85–95. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5523-2_9

    Chapter  Google Scholar 

  16. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall Press, Upper Saddle River (2002)

    Google Scholar 

  17. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  18. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  19. Haralick, R.M., Shanmungam, K., Dinstein, I.: Textural features of image classification. IEEE Trans. Syst. Man Cybern. B Cybern. 3, 610–621 (1973)

    Article  Google Scholar 

  20. http://wang.ist.psu.edu/docs/related/. Accessed Oct 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastava, P., Khare, M., Khare, A. (2020). Combining Local Binary Pattern and Speeded-Up Robust Feature for Content-Based Image Retrieval. In: Sitek, P., Pietranik, M., Krótkiewicz, M., Srinilta, C. (eds) Intelligent Information and Database Systems. ACIIDS 2020. Communications in Computer and Information Science, vol 1178. Springer, Singapore. https://doi.org/10.1007/978-981-15-3380-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3380-8_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3379-2

  • Online ISBN: 978-981-15-3380-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics