[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Missing Elements Recovery Using Low-Rank Tensor Completion and Total Variation Minimization

  • Conference paper
  • First Online:
Digital TV and Wireless Multimedia Communication (IFTC 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1181))

Abstract

The Low-rank (LR) and total variation (TV) are two most popular regularizations for image processing problems and have sparked a tremendous number of researches, particularly for moving from scalar to vector, matrix or even high-order based functions. However, discretization schemes commonly used for TV regularization often ignore the difference of the intrinsic properties, which is not effective enough to exploit the local smoothness, let alone the problem of edge blurring. To address this issue, in this paper, we consider the color image as three-dimensional tensors, then measure the smoothness of these tensors by TV norm along the different dimensions. The three-order tensor is then recovered by Tucker decomposition factorization. Specifically, we propose integrating Shannon total variation (STV) into low-rank tensor completion (LRTC). Moreover, due to the suboptimality of nuclear norm, we propose a new nonconvex low-rank constraint for closer rank approximation, namely truncated \(\gamma \)-norm. We solve the cost function using the alternating direction method of multipliers (ADMM) method. Experiments on color image inpainting tasks demonstrate that the proposed method enhances the details of the recovered images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guillemot, C., Le Meur, O.: Image inpainting: overview and recent advances. IEEE Sig. Process. Mag. 31(1), 127–144 (2014)

    Article  Google Scholar 

  2. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  3. Komodakis, N.: Image completion using global optimization. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 1, pp. 442–452. IEEE (2006)

    Google Scholar 

  4. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. arXiv preprint arXiv:0903.1476

  5. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 27(2), 025010 (2011)

    Article  MathSciNet  Google Scholar 

  6. Jidesh, P., Febin, I.: Estimation of noise using non-local regularization frameworks for image denoising and analysis. Arab. J. Sci. Eng. 44(4), 3425–3437 (2019)

    Article  Google Scholar 

  7. Bini, A.: Image restoration via dost and total variation regularisation. IET Image Process. 13(3), 458–468 (2018)

    Article  Google Scholar 

  8. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  Google Scholar 

  9. Markovsky, I.: Applications of structured low-rank approximation. IFAC Proc. Vol. 42(10), 1121–1126 (2009)

    Article  Google Scholar 

  10. Candés, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 7–17 (2009)

    Article  MathSciNet  Google Scholar 

  11. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Sig. Process. Lett. 14(10), 707–710 (2007)

    Article  Google Scholar 

  12. Shang, F., Liu, Y., Cheng, J.: Scalable algorithms for tractable Schatten quasi-norm minimization. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  13. Chen, Y., Guo, Y., Wang, Y., et al.: Denoising of hyperspectral images using nonconvex low rank matrix approximation. IEEE Trans. Geosci. Remote Sens. 55(9), 5366–5380 (2017)

    Article  Google Scholar 

  14. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)

    Article  Google Scholar 

  15. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends R Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  16. Tomioka, R., Hayashi, K., Kashima, H.: Estimation of low-rank tensors via convex optimization. arXiv preprint arXiv:1010.0789

  17. Li, X., Ye, Y., Xu, X.: Low-rank tensor completion with total variation for visual data inpainting. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, vol. 419, pp. 2210–2216 (2017)

    Google Scholar 

  18. Chen, Y.-L., Hsu, C.-T., Liao, H.-Y.: Simultaneous tensor decomposition and completion using factor priors. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 577–591 (2014)

    Article  Google Scholar 

  19. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  Google Scholar 

  20. Abergel, R., Moisan, L.: The shannon total variation. J. Math. Imaging Vis. 59(2), 341–370 (2017)

    Article  MathSciNet  Google Scholar 

  21. Xu, J., Zhang, L., Zhang, D., Feng, X.: Multi-channel weighted nuclear norm minimization for real color image denoising, pp. 1096–1104. CoRR (2017)

    Google Scholar 

  22. Ji, T.Y., Huang, T.Z., Zhao, X.L., Ma, T.H., Liu, G.: Tensor completion using total variation and low-rank matrix factorization. Inf. Sci. 326, 243–257 (2016)

    Article  MathSciNet  Google Scholar 

  23. Zhou, L., Tang, J.: Fraction-order total variation blind image restoration based on \(l_{1}\)-norm. Appl. Math. Model. 51, 469–476 (2017)

    Article  MathSciNet  Google Scholar 

  24. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  25. Zhao, Q., Zhang, L., Cichocki, A.: Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Trans. Pattern Anal. Mach. Intel. 37(9), 1751–1763 (2015)

    Article  Google Scholar 

  26. Li, X., Ye, Y., Xu, X.: Low-rank tensor completion with total variation for visual data inpainting. In: 2017 Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 2210–2216 (2017)

    Google Scholar 

Download references

Acknowledgment

This research is funded by Natural Science Foundation of China under Grant Nos. 61702275, 61976192, 61602413, 41775008, and by Zhejiang Provincial Natural Science Foundation of China under Grant Nos. LY18F020032 and LY19F030016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Qin, M., Bai, C., Zheng, J. (2020). Missing Elements Recovery Using Low-Rank Tensor Completion and Total Variation Minimization. In: Zhai, G., Zhou, J., Yang, H., An, P., Yang, X. (eds) Digital TV and Wireless Multimedia Communication. IFTC 2019. Communications in Computer and Information Science, vol 1181. Springer, Singapore. https://doi.org/10.1007/978-981-15-3341-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3341-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3340-2

  • Online ISBN: 978-981-15-3341-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics