[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multiagent System as Support for the Diagnosis of Language Impairments Using BCI-Neurofeedback: Preliminary Study

  • Conference paper
  • First Online:
Agents and Multi-Agent Systems: Technologies and Applications 2020

Abstract

This working progress paper will focus on determining the extent to which the Electroencephalogram (EEG) signal can be subjected to treatment and classification techniques in order to determine whether it is possible to differentiate between language disorders, as well as learn more about the behavior of these language alterations at the brain level, and provide a tool to support the medical diagnosis. We have established the hypothesis that, through a Brain Computer Interface (BCI) as well as through EEG signal treatment and classification techniques, in conjunction with the application of medical Neurofeedback techniques, and identify relevant information that allows grouping of language disorders; this by measuring concentration levels among patients with these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mutasim, A.K., Tipu, R.S., Raihanul Bashar, M., Kafiul Islam, Md., Ashraful Amin, M.: Springer international publishing AG, part of springer nature 2018 Pedrycz, W., Chen, S.-M. (eds.), Computational Intelligence for Pattern Recognition, Studies in Computational Intelligence 777, https://doi.org/10.1007/978-3-319-89629-8_11

    Chapter  Google Scholar 

  2. Weismer, S.E.: The Cambridge Handbook of Communication Disorders. Chapter: Specific language impairment, pp. 73–87. https://doi.org/10.1017/CBO9781139108683.007

  3. Mehta, B., Chawla, V.K., Parakh, M., Parakh, P., Bhandari, B., Gurjar, A.S.: EEG abnormalities in children with speech and language impairment. J. Clin. Diagnost. Res. https://doi.org/10.7860/JCDR/2015/13920.6168

  4. Mills, D.L., and Neville, H.J.: Electrophysiological studies of language and language impairments. volume 4. J. Seminars Pediat. Neurol. https://doi.org/10.1016/S1071-9091(97)80029-0

    Article  Google Scholar 

  5. Obler, L.K., Gjerlow, K., Méndez, E., Tena, P.: El lenguaje y el cerebro. ISBN: 9788483230909

    Google Scholar 

  6. Tonin, A., Birbaumer, N., Chaudhary, U.: A 20-questions-based binary spelling interface for communication systems. J. Brain Sci. https://doi.org/10.3390/brainsci8070126

    Article  Google Scholar 

  7. Kozhushko, N.J., Nagornova, Z.V., Evdokimov, S.A., Shemyakina, N.V., Ponomarev, V.A., Tereshchenko, E.P., Kropotov, J.D.: Specificity of spontaneous EEG associated with different levels of cognitive and communicative dysfunctions in children. J. Int. J. Psychophysiol. https://doi.org/10.1016/j.ijpsycho.2018.03.013

    Article  Google Scholar 

  8. Pascual-Marqui, R.D.: Standardized low resolution brain electromagnetic tomography (SLORETA): technical details. J. Methods fFindi. Exp. Clin. Pharmacol.

    Google Scholar 

  9. Xiao, L.: A herarchical agente decision support model and its cllinical application. In: Journal of Agents and Multi-agent Systems: Technologies and Applications 2019: 13th KES International Conference, KES-AMSTA-2019 St. Julians, Malta, June 2019 Proceedings. https://doi.org/10.1007/978-981-13-8679-4_17

    Google Scholar 

  10. Omejc, N., Rojc, B., Battaglini, P.P., Marusic, U.: Review of the therapeutic neurofeedback method using electroencephalography: EEG Neurofeedback. Bosn. J. Basic Med. Sci [Internet]. 2019Aug.20 [cited 2020Jan.17];19(3):213-20. Available from http://www.bjbms.org/ojs/index.php/bjbms/article/view/3785

  11. PNuwer, M.R., Comi, G., Emerson, R., Fuglsang-Frederiksen, A., Guérit, J.-M., Hinrichs, H.: IFCN standards for digital recording of clinical EEG. J. Int. Feder. Clin. Neurophysiol. https://doi.org/10.1016/s0013-4694(97)00106-5

    Article  Google Scholar 

  12. Riccio, C.A., Sullivan, J.R., Cohen, M.J.: Specific language impairment/dysphasia. Chapter 4. In book of Handbook of Child Language Disorders. https://doi.org/10.4324/9781315283531

    Google Scholar 

  13. Aguilar Fabré, L., Valdivia Álvarez, I., Rodriguez Valdés, R.F., Gárate Sánchez, E., Morgade Fonte, R.M., Castillo Yzquierdo, G., et al.: Hallazgos electroencefalográficos en los pacientes con trastorno específico del desarrollo del lenguaje. Rev Cubana Neurol Neurocir. [Internet] 2015 [citado dia, mes y año];5(1):13–8. Disponible en: http://www.revneuro.sld.cu/index.php/neu/article/view/205

  14. Hyvarinen, A., Karhunen, J., Oja, E.: Independent component analysis. In Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control. ISBN: 9780471464198

    Google Scholar 

  15. Rodriguez Hernández, O.: Temas de Analisis Estadistico Multivariado. In Editorial Universidad de Costa Rica. ISBN: 9789977674902

    Google Scholar 

  16. Pradhan, C.K., Rahaman, S., Abdul Alim Sheikh, Md., Kole, A., Maity, T.: EEG signal analysis using different clustering techniques. J. Emerg. Technol. Data Mining Inf. Secur. https://doi.org/10.1007/978-981-13-1498-8_9

    Google Scholar 

  17. Arora, J., Khatter, K., Tushir, M.: Fuzzy C-means clustering strategies: a review of distance measures. J. Adv. Intell. Syst. Comput. https://doi.org/10.1007/978-981-10-8848-3_15

    Google Scholar 

  18. Ahmad, A., Khan, S.S.: Survey of state-of-the-art mixed data clustering algorithms. J. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2903568

    Article  Google Scholar 

Download references

Acknowledgements

To CONACYT, for the support provided during the period of study for the master’s degree. To Dr. Rosario Baltazar and the members of the committee of researchers who took part during the realization of this preliminary study. Special thanks goes to Dr. Socorro Gutierrez and Dr. Consuelo Mart­nez for their valuable contribution of knowledge in the medical area related to language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martínez, E. et al. (2020). Multiagent System as Support for the Diagnosis of Language Impairments Using BCI-Neurofeedback: Preliminary Study. In: Jezic, G., Chen-Burger, J., Kusek, M., Sperka, R., Howlett, R., Jain, L. (eds) Agents and Multi-Agent Systems: Technologies and Applications 2020. Smart Innovation, Systems and Technologies, vol 186. Springer, Singapore. https://doi.org/10.1007/978-981-15-5764-4_21

Download citation

Publish with us

Policies and ethics