Abstract
We present and discuss results of the application of a deep convolutional network model developed for the automatic recognition of images of insects. The network was trained using transfer learning on an architecture called MobileNet, specifically developed for mobile applications. To fine tune the model, a grid-search on hyperparameters space was carried out reaching a final accuracy of 98.39% on 11 classes. Fine-tuned models were validated using 10-fold cross validation and the best model was integrated into an Android application for practical use. We propose solving the “open set” problem through feed-back collected with the application itself. This work also led to the creation of a well-structured image dataset of some important species/genera of insects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Borghese, N.A., Arbib, M.A.: Generation of temporal sequences using local dynamic programming. Neural Netw. 8(1), 39–54 (1995). https://doi.org/10.1016/0893-6080(94)00053-O
Borghese, N.A., Ferrari, S.: Hierarchical RBF networks and local parameters estimate. Neurocomputing 19, 259–283 (1998)
Dauphin, Y.N., de Vries, H., Chung, J., Bengio, Y.: RMSProp and equilibrated adaptive learning rates for non-convex optimization. CoRR arXiv:1502.04390 (2015)
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, JMLR Workshop and Conference Proceedings, vol. 32, pp. 647–655. JMLR.org, 21–26 June 2014. http://proceedings.mlr.press/v32/donahue14.html
Ferrari, S., Bellocchio, F., Piuri, V., Borghese, N.A.: A hierarchical RBF online learning algorithm for real-time 3-D scanner. IEEE Trans. Neural Netw. 21(2), 275–285 (2010). https://doi.org/10.1109/TNN.2009.2036438
Ferrari, S., Maggioni, M., Borghese, A.: Multiscale approximation with hierarchical radial basis functions networks. IEEE Trans. Neural Netw. (a publication of the IEEE Neural Networks Council) 15, 178–188 (2004). https://doi.org/10.1109/TNN.2003.811355
Glick, J., Miller, K.: Insect classification with heirarchical deep convolutional neural networks convolutional neural networks for visual recognition (CS231N) (2016)
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR arXiv:1704.04861 (2017)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, pp. 7132–7141. IEEE Computer Society, 18–22 June 2018. https://doi.org/10.1109/CVPR.2018.00745. http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, Conference Track Proceedings, 7–9 May 2015. arXiv:1412.6980
Krizhevsky, A.: Convolutional deep belief networks on CIFAR-10 (2010)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held 3–6 Dec 2012, Lake Tahoe, Nevada, United States, pp. 1106–1114 (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
Ma, N., Zhang, X., Zheng, H., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision—ECCV 2018—15th European Conference, Munich, Germany, Proceedings, Part XIV. Lecture Notes in Computer Science, vol. 11218, pp. 122–138. Springer, 8–14 Sept 2018. https://doi.org/10.1007/978-3-030-01264-9_8
Martineau, M., Conte, D., Raveaux, R., Arnault, I., Munier, D., Venturini, G.: A survey on image-based insect classification. Pattern Recognit. 65, 273–284 (2017). https://doi.org/10.1016/j.patcog.2016.12.020
Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2014, Columbus, OH, USA, pp. 512–519. IEEE Computer Society, 23–28 June 2014. https://doi.org/10.1109/CVPRW.2014.131
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Li, F.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, pp. 4510–4520. IEEE Computer Society, 18–22 June 2018. https://doi.org/10.1109/CVPR.2018.00474. http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
Sanner, R.M., Slotine, J.E.: Gaussian networks for direct adaptive control. IEEE Trans. Neural Netw. 3(6), 837–863 (1992). https://doi.org/10.1109/72.165588
Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2013). https://doi.org/10.1109/TPAMI.2012.256
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, Quebec, Canada, pp. 3320–3328, 8–13 Dec 2014. http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks
Yosinski, J., Clune, J., Nguyen, A.M., Fuchs, T.J., Lipson, H.: Understanding neural networks through deep visualization. CoRR arXiv:1506.06579 (2015)
Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, pp. 6848–6856. IEEE Computer Society, 18–22 June 2018. https://doi.org/10.1109/CVPR.2018.00716. http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html
Zipser, D., Andersen, R.A.: A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331, 679–684 (1988)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Visalli, F., Bonacci, T., Borghese, N.A. (2021). Insects Image Classification Through Deep Convolutional Neural Networks. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Progresses in Artificial Intelligence and Neural Systems. Smart Innovation, Systems and Technologies, vol 184. Springer, Singapore. https://doi.org/10.1007/978-981-15-5093-5_21
Download citation
DOI: https://doi.org/10.1007/978-981-15-5093-5_21
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-5092-8
Online ISBN: 978-981-15-5093-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)