[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Insects Image Classification Through Deep Convolutional Neural Networks

  • Chapter
  • First Online:
Progresses in Artificial Intelligence and Neural Systems

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 184))

Abstract

We present and discuss results of the application of a deep convolutional network model developed for the automatic recognition of images of insects. The network was trained using transfer learning on an architecture called MobileNet, specifically developed for mobile applications. To fine tune the model, a grid-search on hyperparameters space was carried out reaching a final accuracy of 98.39% on 11 classes. Fine-tuned models were validated using 10-fold cross validation and the best model was integrated into an Android application for practical use. We propose solving the “open set” problem through feed-back collected with the application itself. This work also led to the creation of a well-structured image dataset of some important species/genera of insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.image-net.org/challenges/LSVRC/.

  2. 2.

    https://cs230.stanford.edu/blog/split/.

  3. 3.

    https://keras.io/.

  4. 4.

    https://www.tensorflow.org/.

References

  1. Borghese, N.A., Arbib, M.A.: Generation of temporal sequences using local dynamic programming. Neural Netw. 8(1), 39–54 (1995). https://doi.org/10.1016/0893-6080(94)00053-O

  2. Borghese, N.A., Ferrari, S.: Hierarchical RBF networks and local parameters estimate. Neurocomputing 19, 259–283 (1998)

    Article  Google Scholar 

  3. Dauphin, Y.N., de Vries, H., Chung, J., Bengio, Y.: RMSProp and equilibrated adaptive learning rates for non-convex optimization. CoRR arXiv:1502.04390 (2015)

  4. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, JMLR Workshop and Conference Proceedings, vol. 32, pp. 647–655. JMLR.org, 21–26 June 2014. http://proceedings.mlr.press/v32/donahue14.html

  5. Ferrari, S., Bellocchio, F., Piuri, V., Borghese, N.A.: A hierarchical RBF online learning algorithm for real-time 3-D scanner. IEEE Trans. Neural Netw. 21(2), 275–285 (2010). https://doi.org/10.1109/TNN.2009.2036438

  6. Ferrari, S., Maggioni, M., Borghese, A.: Multiscale approximation with hierarchical radial basis functions networks. IEEE Trans. Neural Netw. (a publication of the IEEE Neural Networks Council) 15, 178–188 (2004). https://doi.org/10.1109/TNN.2003.811355

  7. Glick, J., Miller, K.: Insect classification with heirarchical deep convolutional neural networks convolutional neural networks for visual recognition (CS231N) (2016)

    Google Scholar 

  8. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR arXiv:1704.04861 (2017)

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, pp. 7132–7141. IEEE Computer Society, 18–22 June 2018. https://doi.org/10.1109/CVPR.2018.00745. http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, Conference Track Proceedings, 7–9 May 2015. arXiv:1412.6980

  11. Krizhevsky, A.: Convolutional deep belief networks on CIFAR-10 (2010)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held 3–6 Dec 2012, Lake Tahoe, Nevada, United States, pp. 1106–1114 (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

  13. Ma, N., Zhang, X., Zheng, H., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision—ECCV 2018—15th European Conference, Munich, Germany, Proceedings, Part XIV. Lecture Notes in Computer Science, vol. 11218, pp. 122–138. Springer, 8–14 Sept 2018. https://doi.org/10.1007/978-3-030-01264-9_8

  14. Martineau, M., Conte, D., Raveaux, R., Arnault, I., Munier, D., Venturini, G.: A survey on image-based insect classification. Pattern Recognit. 65, 273–284 (2017). https://doi.org/10.1016/j.patcog.2016.12.020

  15. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2014, Columbus, OH, USA, pp. 512–519. IEEE Computer Society, 23–28 June 2014. https://doi.org/10.1109/CVPRW.2014.131

  16. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Li, F.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

  17. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, pp. 4510–4520. IEEE Computer Society, 18–22 June 2018. https://doi.org/10.1109/CVPR.2018.00474. http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html

  18. Sanner, R.M., Slotine, J.E.: Gaussian networks for direct adaptive control. IEEE Trans. Neural Netw. 3(6), 837–863 (1992). https://doi.org/10.1109/72.165588

  19. Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2013). https://doi.org/10.1109/TPAMI.2012.256

  20. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, Quebec, Canada, pp. 3320–3328, 8–13 Dec 2014. http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks

  21. Yosinski, J., Clune, J., Nguyen, A.M., Fuchs, T.J., Lipson, H.: Understanding neural networks through deep visualization. CoRR arXiv:1506.06579 (2015)

  22. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, pp. 6848–6856. IEEE Computer Society, 18–22 June 2018. https://doi.org/10.1109/CVPR.2018.00716. http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html

  23. Zipser, D., Andersen, R.A.: A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331, 679–684 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Alberto Borghese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Visalli, F., Bonacci, T., Borghese, N.A. (2021). Insects Image Classification Through Deep Convolutional Neural Networks. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Progresses in Artificial Intelligence and Neural Systems. Smart Innovation, Systems and Technologies, vol 184. Springer, Singapore. https://doi.org/10.1007/978-981-15-5093-5_21

Download citation

Publish with us

Policies and ethics