[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SoCNNet: An Optimized Sobel Filter Based Convolutional Neural Network for SEM Images Classification of Nanomaterials

  • Chapter
  • First Online:
Progresses in Artificial Intelligence and Neural Systems

Abstract

In this paper an optimized deep Convolutional Neural Network (CNN) for the automatic classification of Scanning Electron Microscope (SEM) images of homogeneous (HNF) and nonhomogeneous nanofibers (NHNF) produced by electrospinnig process is presented. Specifically, SEM images are used as input of a Deep Learning (DL) framework consisting of: a Sobel filter based pre-processing stage followed by a CNN classifier. Here, such DL architecture is denoted as SoCNNet. The Polyvinylacetate (PVAc) SEM image of NHNF and HNF dataset collected at the Materials for Environmental and Energy Sustainability Laboratory of the University Mediterranea of Reggio Calabria (Italy) is used to evaluate the performance of the developed system. Experimental results (average accuracy rate up to \(80.27\% \pm 0.0048\)) demonstrate the potential effectiveness of the proposed SoCNNet in the industrial chain of nanofibers production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Fuzzy divergence can be considered as a distance because it satisfies all the axioms of the metric spaces.

References

  1. Wu, Y., Qu, J., Daoud, W.A., Wang, L., Qi, T.: Flexible composite-nanofiber based piezo-triboelectric nanogenerators for wearable electronics. J. Mater. Chem. A (2019)

    Google Scholar 

  2. Yang, Y., Chawla, A., Zhang, J., Esa, A., Jang, H.L., Khademhosseini, A.: Applications of nanotechnology for regenerative medicine; healing tissues at the nanoscale. In: Principles of Regenerative Medicine, pp. 485–504. Elsevier (2019)

    Google Scholar 

  3. Mo, X., Sun, B., Wu, T., Li, D.: Electrospun nanofibers for tissue engineering. In: Electrospinning: Nanofabrication and Applications, pp. 719–734. Elsevier (2019)

    Google Scholar 

  4. Topuz, F., Uyar, T.: Electrospinning of cyclodextrin functional nanofibers for drug delivery applications. Pharmaceutics 11(1), 6 (2019)

    Article  Google Scholar 

  5. Entov, V., Shmaryan, L.: Numerical modeling of the capillary breakup of jets of polymeric liquids. Fluid Dyn. 32(5), 696–703 (1997)

    MATH  Google Scholar 

  6. Yarin, A.L.: Free liquid jets and films: hydrodynamics and rheology. Longman Publishing Group (1993)

    Google Scholar 

  7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  8. Ieracitano, C., Adeel, A., Gogate, M., Dashtipour, K., Morabito, F.C., Larijani, H., Raza, A., Hussain, A.: Statistical analysis driven optimized deep learning system for intrusion detection. In: International Conference on Brain Inspired Cognitive Systems, pp. 759–769. Springer (2018)

    Google Scholar 

  9. Ieracitano, C., Adeel, A., Morabito, F.C., Hussain, A.: A novel statistical analysis and autoencoder driven intelligent intrusion detection approach. Neurocomputing 387, 51–62. Elsevier (2020)

    Google Scholar 

  10. Ieracitano, C., Mammone, N., Bramanti, A., Hussain, A., Morabito, F.C.: A convolutional neural network approach for classification of dementia stages based on 2d-spectral representation of EEG recordings. Neurocomputing 323, 96–107 (2019)

    Article  Google Scholar 

  11. Dashtipour, K., Gogate, M., Adeel, A., Ieracitano, C., Larijani, H., Hussain, A.: Exploiting deep learning for Persian sentiment analysis. In: International Conference on Brain Inspired Cognitive Systems, pp. 597–604. Springer (2018)

    Google Scholar 

  12. Ieracitano, C., Mammone, N., Hussain, A., Morabito, F.C.: A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia. Neural Netw. 123, 176–190. Elsevier (2020)

    Google Scholar 

  13. Carrera, D., Manganini, F., Boracchi, G., Lanzarone, E.: Defect detection in sem images of nanofibrous materials. IEEE Trans. Industr. Inf. 13(2), 551–561 (2017)

    Article  Google Scholar 

  14. Boracchi, G., Carrera, D., Wohlberg, B.: Novelty detection in images by sparse representations. In: 2014 IEEE Symposium on Intelligent Embedded Systems (IES), pp. 47–54. IEEE (2014)

    Google Scholar 

  15. Napoletano, P., Piccoli, F., Schettini, R.: Anomaly detection in nanofibrous materials by CNN-based self-similarity. Sensors 18(1), 209 (2018)

    Article  Google Scholar 

  16. Ieracitano, C., Pantó, F., Mammone, N., Paviglianiti, A., Frontera, P., Morabito, F.C.: Towards an automatic classification of SEM images of nanomaterial via a deep learning approach. In: Neural Approaches to Dynamics of Signal Exchanges. pp. 61–72. Springer (2020)

    Google Scholar 

  17. Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospun fibers. J. Electrostat. 35(2–3), 151–160 (1995)

    Article  Google Scholar 

  18. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926), 64–71 (1989)

    Article  Google Scholar 

  19. Theron, S., Zussman, E., Yarin, A.: Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45(6), 2017–2030 (2004)

    Article  Google Scholar 

  20. Gonzales, R., Woods, R.: Digital Image Processing. Pearson-Prentice Hall (2018)

    Google Scholar 

  21. Chaira, T., Ray, A.K.: Fuzzy Image Processing and Applications with MATLAB. CRC Press (2009)

    Google Scholar 

  22. Versaci, M., Morabito, F.C., Angiulli, G.: Adaptive image contrast enhancement by computing distances into a 4-dimensional fuzzy unit hypercube. IEEE Access 5, 26922–26931 (2017)

    Article  Google Scholar 

  23. Versaci, M., Calcagno, S., Morabito, F.C.: Fuzzy geometrical approach based on unit hyper-cubes for image contrast enhancement. In: IEEE International Conference on Signal and Image Processing Applications (ICSIPA 2015), pp. 488–493. IEEE (2015)

    Google Scholar 

  24. Versaci, M., Calcagno, S., Morabito, F.C.: Image contrast enhancement by distances among points in fuzzy hyper-cubes. In: IEEE International Conference, CAIP 2015, pp. 494–505. IEEE (2015)

    Google Scholar 

  25. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  26. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In: Neural Networks: Tricks of the Trade, pp. 437–478. Springer (2012)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the project code: GR-2011-02351397. The authors would also like to thank the research group of the Materials for Environmental and Energy Sustainability Laboratory from the University Mediterranea of Reggio Calabria (Italy) for providing the SEM image dataset used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Ieracitano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ieracitano, C., Paviglianiti, A., Mammone, N., Versaci, M., Pasero, E., Morabito, F.C. (2021). SoCNNet: An Optimized Sobel Filter Based Convolutional Neural Network for SEM Images Classification of Nanomaterials. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Progresses in Artificial Intelligence and Neural Systems. Smart Innovation, Systems and Technologies, vol 184. Springer, Singapore. https://doi.org/10.1007/978-981-15-5093-5_10

Download citation

Publish with us

Policies and ethics