[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mining and Ranking Important Nodes in Complex Network by K-Shell and Degree Difference

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 901))

  • 1644 Accesses

Abstract

Identifying important nodes in complex networks can help us effectively design protection strategies, improve the security and protection capabilities of network hub nodes, and enhance the network survivability and structural stability. In view of nodes partition being too coarse by the k-shell decomposition method, this paper proposes a new index named k-shell and degree difference, which considers the network node location, the local characteristics of the node and its neighbors and the impact of multi-level nodes on it. In this paper, the network efficiency index is used to quantify the impact of the node removal on the network structure and function, and the destruction-resistance experiment is carried out in four actual networks. Experimental results show that the method proposed in this paper is more accurately to assess the importance of nodes than other four methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)

    Article  Google Scholar 

  2. Ren, X.L., Lü, L.Y.: Review of ranking nodes in complex networks. Chin. Sci. Bull. (Chin. Ver.) 59(59), 1175–1197 (2014). (in Chinese)

    Article  Google Scholar 

  3. Ren, Z.M.: Analysis of the spreading influence of the nodes with minimum K-shell value in complex networks. Acta Phys. Sin. 62(10), 956–959 (2013). (in Chinese)

    Google Scholar 

  4. Balthrop, J., Forrest, S., Newman, M.E., et al.: Computer science. Technological networks and the spread of computer viruses. Science 304(5670), 527–529 (2004)

    Article  Google Scholar 

  5. Kinney, R., Crucitti, P., Albert, R., et al.: Modeling cascading failures in the North American power grid. Eur. Phys. J. B – Condens. Matter Complex Syst. 46(1), 101–107 (2005)

    Article  Google Scholar 

  6. Moreno, Y., Nekovee, M., Pacheco, A.F.: Dynamics of rumor spreading in complex networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69(6 Pt 2), 066130 (2004)

    Article  Google Scholar 

  7. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)

    Article  MathSciNet  Google Scholar 

  8. Goh, K.I., Oh, E., Kahng, B., et al.: Betweenness centrality correlation in social networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 67(1 Pt 2), 017101 (2016)

    Google Scholar 

  9. Brin, S., Page, L.: Anatomy of a large-scale hypertextual web search engine. J. Comput. Netw. ISDN Syst. 30, 107–117 (1998)

    Article  Google Scholar 

  10. Ruan, Y.R., Lao, S.Y., Wang, J.D., et al.: Node importance measurement based on neighborhood similarity in complex network. Acta Phys. Sin. 66(3), 038902 (2017). (in Chinese)

    Google Scholar 

  11. Chen, D., Lü, L., Shang, M.S., et al.: Identifying influential nodes in complex networks. Phys. A Stat. Mech. Appl. 391(4), 1777–1787 (2012)

    Article  Google Scholar 

  12. Kitsak, M., Gallos, L.K., Havlin, S., et al.: Identifying influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  13. Liu, Y., Tang, M., Zhou, T., et al.: Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition. Sci. Rep. 5, 9602 (2015)

    Article  Google Scholar 

  14. Liu, Y., Tang, M., Zhou, T., et al.: Improving the accuracy of the k-shell method by removing redundant links: from a perspective of spreading dynamics. Sci. Rep. 5, 13172 (2015)

    Article  Google Scholar 

  15. Shan, B., Tao, F.: Design change control of complex products based on important nodes. Comput. Eng. Appl. 54(6), 222–227 (2018)

    Google Scholar 

  16. Lalou, M., Tahraoui, M.A., Kheddouci, H.: The critical node detection problem in networks: a survey. Comput. Sci. Rev. 28, 92–117 (2018)

    Article  MathSciNet  Google Scholar 

  17. Liu, Y., Wei, B., Du, Y., et al.: Identifying influential spreaders by weight degree centrality in complex networks. Chaos Solitons Fractals Interdiscip. J. Nonlinear Sci. Nonequilib. Complex Phenom. 86, 1–7 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Adebayo, I., Jimoh, A.A., Yusuff, A.: Voltage stability assessment and identification of important nodes in power transmission network through network response structural characteristics. IET Gener. Trans. Distrib. 11(6), 1398–1408 (2017)

    Article  Google Scholar 

  19. Bae, J., Kim, S.: Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Phys. A Stat. Mech. Appl. 395(4), 549–559 (2014)

    Article  MathSciNet  Google Scholar 

  20. Ma, L.L., Ma, C., Zhang, H.F., et al.: Identifying influential spreaders in complex networks based on gravity formula. Phys. A Stat. Mech. Appl. 451, 205–212 (2016)

    Article  Google Scholar 

  21. Vragović, I., Louis, E., Díaz-Guilera, A.: Efficiency of informational transfer in regular and complex networks. Phys. Rev. E 71(3 Pt 2A), 036122 (2005)

    Article  Google Scholar 

  22. Latora, V., Marchiori, M.: A measure of centrality based on network efficiency. New J. Phys. 9(6), 188 (2007)

    Article  Google Scholar 

  23. Lusseau, D., Schneider, K., Boisseau, O.J., et al.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  24. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U. S. A. 99(12), 7821–7826 (2001)

    Article  MathSciNet  Google Scholar 

  25. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  26. White, J.G., Southgate, E., Thomson, J.N., et al.: The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. Roy. Soc. B Biol. Sci. 314(1165), 1–340 (1986)

    Article  Google Scholar 

  27. Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009)

    Article  Google Scholar 

  28. Lai, Y.C., Motter, A.E., Nishikawa, T.: Attacks and cascades in complex networks. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks. LNP, vol. 650, pp. 299–310. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-44485-5_14

    Chapter  MATH  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China under Grant Nos. 61370083, 61672179, 61402126, the Heilongjiang Province Natural Science Foundation of China under Grant No. F2015030, the Youth Science Foundation of Heilongjiang Province of China under Grant No. QC2016083, and the Postdoctoral Support of Heilongjiang Province of China under Grant No. LBH-Z14071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Xu, H., Yang, J., Lun, L. (2018). Mining and Ranking Important Nodes in Complex Network by K-Shell and Degree Difference. In: Zhou, Q., Gan, Y., Jing, W., Song, X., Wang, Y., Lu, Z. (eds) Data Science. ICPCSEE 2018. Communications in Computer and Information Science, vol 901. Springer, Singapore. https://doi.org/10.1007/978-981-13-2203-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2203-7_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2202-0

  • Online ISBN: 978-981-13-2203-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics