[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Circular RNAs Act as miRNA Sponges

  • Chapter
  • First Online:
Circular RNAs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1087))

Abstract

Majority of RNAs expressed in animal cells lack protein-coding ability. Unlike other cellular RNAs, circular (circ)RNAs include a large family of noncoding (nc)RNAs that lack the 5′ or 3′ ends. The improvements in high-throughput RNA sequencing and novel bioinformatics tools have led to the identification of thousands of circRNAs in various organisms. CircRNAs can regulate gene expression by influencing the transcription, the mRNA turnover, and translation by sponging RNA-binding proteins and microRNAs. Given the broad impact of circRNA on miRNA activity, there is huge interest in understanding the impact of miRNA sponging by circRNA on gene regulation. In this review, we summarize our current knowledge of the miRNA-circRNA interaction and mechanisms that influence gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563

    Article  CAS  PubMed  Google Scholar 

  2. Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Noller HF (1991) Ribosomal RNA and translation. Annu Rev Biochem 60:191–227

    Article  CAS  PubMed  Google Scholar 

  4. Hsiao KY, Sun HS, Tsai SJ (2017) Circular RNA – new member of noncoding RNA with novel functions. Exp Biol Med (Maywood) 242(11):1136–1141

    Article  CAS  Google Scholar 

  5. Wery M, Kwapisz M, Morillon A (2011) Noncoding RNAs in gene regulation. Wiley Interdiscip Rev Syst Biol Med 3(6):728–738

    Article  CAS  PubMed  Google Scholar 

  6. Yoon JH, Abdelmohsen K, Gorospe M (2013) Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 425(19):3723–3730

    Article  CAS  PubMed  Google Scholar 

  7. Sanger HL, Klotz G, Riesner D et al (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 73(11):3852–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kos A, Dijkema R, Arnberg AC et al (1986) The hepatitis delta (delta) virus possesses a circular RNA. Nature 323(6088):558–560

    Article  CAS  PubMed  Google Scholar 

  9. Nigro JM, Cho KR, Fearon ER et al (1991) Scrambled exons. Cell 64(3):607–613

    Article  CAS  PubMed  Google Scholar 

  10. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Panda AC, Abdelmohsen K, Gorospe M (2017) RT-qPCR detection of senescence-associated circular RNAs. Methods Mol Biol 1534:79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  PubMed  Google Scholar 

  13. Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  15. Panda AC, De S, Grammatikakis I et al (2017) High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res 45(12):e116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xia S, Feng J, Lei L et al (2017) Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief Bioinform 18(6):984–992

    PubMed  Google Scholar 

  17. Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388

    Article  PubMed  PubMed Central  Google Scholar 

  18. Panda AC, Grammatikakis I, Munk R et al (2017) Emerging roles and context of circular RNAs. Wiley Interdiscip Rev RNA 8(2):e1413

    Article  Google Scholar 

  19. Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264

    Article  CAS  Google Scholar 

  20. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17(4):205–211

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Xue W, Li X et al (2016) The biogenesis of nascent circular RNAs. Cell Rep 15(3):611–624

    Article  CAS  PubMed  Google Scholar 

  22. Abdelmohsen K, Panda AC, Munk R et al (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14(3):361–369

    Article  PubMed  PubMed Central  Google Scholar 

  23. Haque S, Harries LW (2017) Circular RNAs (circRNAs) in health and disease. Genes (Basel) 8(12):353

    Article  Google Scholar 

  24. Berezikov E, Guryev V, van de Belt J et al (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1):21–24

    Article  CAS  PubMed  Google Scholar 

  25. Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38(Suppl):S8–S13

    Article  CAS  PubMed  Google Scholar 

  26. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157

    Article  CAS  PubMed  Google Scholar 

  27. Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38(3):323–332

    Article  CAS  PubMed  Google Scholar 

  28. Pillai RS (2005) MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11(12):1753–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou X, Yang PC (2012) MicroRNA: a small molecule with a big biological impact. Microrna 1(1):1

    Article  PubMed  Google Scholar 

  30. Lee KP, Shin YJ, Panda AC et al (2015) miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4. Genes Dev 29(15):1605–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Panda AC, Abdelmohsen K, Gorospe M (2017) SASP regulation by noncoding RNA. Mech Ageing Dev 168:37–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Panda AC, Sahu I, Kulkarni SD et al (2014) miR-196b-mediated translation regulation of mouse insulin2 via the 5′UTR. PLoS One 9(7):e101084

    Article  PubMed  PubMed Central  Google Scholar 

  33. Munk R, Panda AC, Grammatikakis I et al (2017) Senescence-associated microRNAs. Int Rev Cell Mol Biol 334:177–205

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yu L, Gong X, Sun L et al (2016) The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One 11(7):e0158347

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tang W, Ji M, He G et al (2017) Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7. Onco Targets Ther 10:2045–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peng L, Yuan XQ, Li GC (2015) The emerging landscape of circular RNA ciRS-7 in cancer (review). Oncol Rep 33(6):2669–2674

    Article  CAS  PubMed  Google Scholar 

  37. Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307

    PubMed  PubMed Central  Google Scholar 

  38. Xu H, Guo S, Li W et al (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5:12453

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kefas B, Godlewski J, Comeau L et al (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68(10):3566–3572

    Article  CAS  PubMed  Google Scholar 

  40. Pan H, Li T, Jiang Y et al (2018) Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem 119(1):440–446

    Article  CAS  PubMed  Google Scholar 

  41. Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030

    Article  CAS  PubMed  Google Scholar 

  42. Long L, Huang G, Zhu H et al (2013) Down-regulation of miR-138 promotes colorectal cancer metastasis via directly targeting TWIST2. J Transl Med 11:275

    Article  PubMed  PubMed Central  Google Scholar 

  43. Huang G, Zhu H, Shi Y et al (2015) cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/beta-catenin pathway. PLoS One 10(6):e0131225

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang C, Yuan W, Yang X et al (2018) Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer 17(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li F, Zhang L, Li W et al (2015) Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway. Oncotarget 6(8):6001–6013

    PubMed  PubMed Central  Google Scholar 

  46. Wan L, Zhang L, Fan K et al (2016) Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/beta-catenin pathway. Biomed Res Int 2016:1579490

    PubMed  PubMed Central  Google Scholar 

  47. Zheng Q, Bao C, Guo W et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen G, Shi Y, Liu M et al (2018) circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis 9(2):175

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li Y, Zheng F, Xiao X et al (2017) Circ HIPK3 sponges mi R-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep 18(9):1646–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tian F, Wang Y, Xiao Z et al (2017) Circular RNA circHIPK3 promotes NCI-H1299 and NCI-H2170 cell proliferation through miR-379 and its target IGF1. Zhongguo Fei Ai Za Zhi 20(7):459–467

    PubMed  Google Scholar 

  51. Panda AC, Grammatikakis I, Kim KM et al (2017) Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res 45(7):4021–4035

    Article  CAS  PubMed  Google Scholar 

  52. Chen J, Li Y, Zheng Q et al (2017) Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett 388:208–219

    Article  CAS  PubMed  Google Scholar 

  53. Liu Q, Zhang X, Hu X et al (2016) Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 ‘Sponge’ in human cartilage degradation. Sci Rep 6:22572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhong Z, Huang M, Lv M et al (2017) Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett 403:305–317

    Article  CAS  PubMed  Google Scholar 

  55. Zhong Z, Lv M, Chen J (2016) Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6:30919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang K, Sun Y, Tao W et al (2017) Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett 394:1–12

    Article  CAS  PubMed  Google Scholar 

  57. Wang K, Long B, Liu F et al (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611

    Article  CAS  PubMed  Google Scholar 

  58. Peng L, Chen G, Zhu Z et al (2017) Circular RNA ZNF609 functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-150-5p in Hirschsprung’s disease. Oncotarget 8(1):808–818

    PubMed  Google Scholar 

  59. Xie H, Ren X, Xin S et al (2016) Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 7(18):26680–26691

    PubMed  PubMed Central  Google Scholar 

  60. Song YZ, Li JF (2018) Circular RNA hsa_circ_0001564 regulates osteosarcoma proliferation and apoptosis by acting miRNA sponge. Biochem Biophys Res Commun 495(3):2369–2375

    Article  CAS  PubMed  Google Scholar 

  61. Cheng X, Zhang L, Zhang K et al (2018) Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein. Ann Rheum Dis 77(5):770–779

    Article  PubMed  Google Scholar 

  62. Zhou ZB, Du D, Huang GX et al (2018) Circular RNA Atp9b, a competing endogenous RNA, regulates the progression of osteoarthritis by targeting miR-138-5p. Gene 646:203–209

    Article  CAS  PubMed  Google Scholar 

  63. Wang L, Wei Y, Yan Y et al (2018) CircDOCK1 suppresses cell apoptosis via inhibition of miR196a5p by targeting BIRC3 in OSCC. Oncol Rep 39(3):951–966

    PubMed  Google Scholar 

  64. Han D, Li J, Wang H et al (2017) Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 66(4):1151–1164

    Article  CAS  PubMed  Google Scholar 

  65. Fu L, Chen Q, Yao T et al (2017) Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma. Oncotarget 8(27):43878–43888

    PubMed  PubMed Central  Google Scholar 

  66. Xu XW, Zheng BA, Hu ZM et al (2017) Circular RNA hsa_circ_000984 promotes colon cancer growth and metastasis by sponging miR-106b. Oncotarget 8(53):91674–91683

    PubMed  PubMed Central  Google Scholar 

  67. Zhang XL, Xu LL, Wang F (2017) Hsa_circ_0020397 regulates colorectal cancer cell viability, apoptosis and invasion by promoting the expression of the miR-138 targets TERT and PD-L1. Cell Biol Int 41(9):1056–1064

    Article  CAS  PubMed  Google Scholar 

  68. Deng N, Li L, Gao J et al (2018) Hsa_circ_0009910 promotes carcinogenesis by promoting the expression of miR-449a target IL6R in osteosarcoma. Biochem Biophys Res Commun 495(1):189–196

    Article  CAS  PubMed  Google Scholar 

  69. He R, Liu P, Xie X et al (2017) circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res 36(1):145

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jin H, Jin X, Zhang H et al (2017) Circular RNA hsa-circ-0016347 promotes proliferation, invasion and metastasis of osteosarcoma cells. Oncotarget 8(15):25571–25581

    Google Scholar 

  71. Chen J, Cui L, Yuan J et al (2017) Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124. Biochem Biophys Res Commun 494(1–2):126–132

    Article  CAS  PubMed  Google Scholar 

  72. Sun Y, Yang Z, Zheng B et al (2017) A novel regulatory mechanism of smooth muscle alpha-actin expression by NRG-1/circACTA2/miR-548f-5p axis. Circ Res 121(6):628–635

    Article  CAS  PubMed  Google Scholar 

  73. Wang X, Zhu X, Zhang H et al (2018) Increased circular RNA hsa_circ_0012673 acts as a sponge of miR-22 to promote lung adenocarcinoma proliferation. Biochem Biophys Res Commun 496(4):1069–1075

    Article  CAS  PubMed  Google Scholar 

  74. Zhang J, Liu H, Hou L et al (2017) Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer 16(1):151

    Article  PubMed  PubMed Central  Google Scholar 

  75. Liang HF, Zhang XZ, Liu BG et al (2017) Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J Cancer Res 7(7):1566–1576

    PubMed  PubMed Central  Google Scholar 

  76. Dudekula DB, Panda AC, Grammatikakis I et al (2016) CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13(1):34–42

    Article  PubMed  Google Scholar 

  77. Panda AC, Dudekula DB, Abdelmohsen K et al (2018) Analysis of circular RNAs using the web tool CircInteractome. Methods Mol Biol 1724:43–56

    Article  PubMed  PubMed Central  Google Scholar 

  78. Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ghosal S, Das S, Sen R et al (2013) Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet 4:283

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liu YC, Li JR, Sun CH et al (2016) CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res 44(D1):D209–D215

    Article  CAS  PubMed  Google Scholar 

  81. Li JH, Liu S, Zhou H et al (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42(Database issue):D92–D97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Engineering Research Board, a statutory body of the Department of Science and Technology (DST), Government of India (SERB/F/6890/2017-18).

Conflicts of Interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panda, A.C. (2018). Circular RNAs Act as miRNA Sponges. In: Xiao, J. (eds) Circular RNAs. Advances in Experimental Medicine and Biology, vol 1087. Springer, Singapore. https://doi.org/10.1007/978-981-13-1426-1_6

Download citation

Publish with us

Policies and ethics