Abstract
With the rapid development of the Internet, different kinds of network games are emerging. The classification of network game flow is important to improve the quality of service. In this paper, we propose an approach to identify network game traffic. It firstly filters the game traffic data based on protocol filtering and IP filtering to reduce background noise as much as possible. Then, to remove irrelevant and redundant features, Pearson correlation coefficient and information gain ratio are used as the criteria to choose features. By analyzing various statistical features of game traffic, it is found that employing the three features, ratio of inbound to outbound data packets, downlink packet size information entropy and downlink Packets per second, is able to yield better classification performance. The experimental results show that the proposed method is feasible and can achieve higher accuracy than an existing method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dainotti, A., Pescape, A., Claffy, K.: Issues and future directions in traffic classification. IEEE Netw. 26, 35–40 (2012)
Deebalakshmi, R., Jyothi, V.L.: A survey of classification algorithms for network traffic. In: Second International Conference on Science Technology Engineering and Management (ICONSTEM) IEEE, pp. 151–156 (2016)
Nair, L.M., Sajeev, G.P.: Internet traffic classification by aggregating correlated decision tree classifier. In: 7th International Conference on Computational Intelligence, Modelling and Simulation (CIMSim 2015), pp. 135–140 (2015)
Jiang, D., Long, L.: P2P traffic identification research based on the SVM. In: Wireless and Optical Communication Conference (WOCC), IEEE, pp. 683–686 (2013)
Han, Y.T., Park, H.S.: Game traffic classification using statistical characteristics at the transport layer. ETRI J. 32, 22–32 (2010)
Han, Y.T., Park, H.S.:UDP based P2P Game Traffic Classification with Transport Layer Behaviors. In: 14th Asia-Pacific Conference on Communications, pp. 1–5 (2008)
Mu, X., Wu, W.: A parallelized network traffic classification based on hidden markov model. In: International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery IEEE Computer Society, pp. 107–112 (2011)
Maia, J.E.B., Filho, R.H.: Internet traffic classification using a hidden markov model. In: 10th International Conference on Hybrid Intelligent Systems, pp. 37–42 (2010)
Claypool, M., Finkel, D., Grant, A., Solano, M.: Thin to win? network performance analysis of the OnLive thin client game system. In: 11th Annual Workshop on Network and Systems Support for Games, pp. 1–6 (2012)
Cheand, X., Ip, B.: Packet-level traffic analysis of online games from the genre characteristics perspective. J. Netw. Comput. Appl. 35, 240–252 (2012)
Eggert, C., Herrlich, M., Smeddinck, J., Malaka, R.: Classification of player roles in the team-based multi-player game Dota 2. In: Chorianopoulos, K., Divitini, M., Hauge, J.B., Jaccheri, L., Malaka, R. (eds.) ICEC 2015. LNCS, vol. 9353, pp. 112–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24589-8_9
Middleton, S.E., Modafferi, S.: Scalable classification of QoS for real-time interactive applications from IP traffic measurements. Comput. Netw. 107, 121–132 (2016)
Neto, A.M., et al.: Pearson’s correlation coefficient for discarding redundant information in real time autonomous navigation system. In: IEEE International Conference on Control Applications IEEE, pp. 426–431 (2007)
Chen, Z., Peng, L., Zhao, S., Zhang, L., Jing, S.: Feature selection toward optimizing internet traffic behavior identification. In: Sun, X.-h., Qu, W., Stojmenovic, I., Zhou, W., Li, Z., Guo, H., Min, G., Yang, T., Wu, Y., Liu, L. (eds.) ICA3PP 2014. LNCS, vol. 8631, pp. 631–644. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11194-0_56
Yuan, J., et al.: T-drive: driving directions based on taxi trajectories. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 99–108 (2010)
Acknowledgments
The authors would like to thank National Natural Science Foundation of China (No. 61271233) and the HIRP program of Huawei Technology Co. Ltd to sponsor this work in part.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Dong, Y., Zhang, M., Zhou, R. (2018). Classification of Network Game Traffic Using Machine Learning. In: Yuan, H., Geng, J., Liu, C., Bian, F., Surapunt, T. (eds) Geo-Spatial Knowledge and Intelligence. GSKI 2017. Communications in Computer and Information Science, vol 848. Springer, Singapore. https://doi.org/10.1007/978-981-13-0893-2_15
Download citation
DOI: https://doi.org/10.1007/978-981-13-0893-2_15
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-0892-5
Online ISBN: 978-981-13-0893-2
eBook Packages: Computer ScienceComputer Science (R0)