[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

ECG Biometric Recognition

  • Conference paper
  • First Online:
Mathematics and Computing (ICMC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 834))

Included in the following conference series:

Abstract

This paper presents a human recognition system using single lead electrocardiogram (ECG). The method corrects the ECG signal from noise as well as other artifacts to it and extracts major features from P-QRS-T waveforms. Finite Impulse Response (FIR) equiripple high pass filter is used for denoising ECG signal. Haar wavelet transform is used to detect the R peaks. By using this novel approach, different extensive information like heart rates, interval features, amplitude features, angle features area features are received among dominant fiducials of ECG waveform. The feasibility of ECG as a new biometric is tested on selected features that report the recognition accuracy to 97.12% on the data size of 100 recordings of PTB database. The results obtained from the proposed approach surpasses the other conventional methods for biometric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Draper, H.W., Peffer, C.J., Stallmann, F.W., Littmann, D., Pipberger, H.V.: The corrected orthogonal electrocardiogram and vector cardiogram in 510 normal men (Frank lead system). Circulation 30(6), 853–864 (1964)

    Article  Google Scholar 

  2. Webster, J.G.: Medical Instrumentation: Application and Design. Wiley, Philadelphia (1997)

    Google Scholar 

  3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2000)

    MATH  Google Scholar 

  4. Wayman, J.L.: Fundamentals of biometric authentication technologies. Int. J. Image Graph. 1(1), 93–113 (2001)

    Article  Google Scholar 

  5. Biel, L., Pettersson, O., Philipson, L., Wide, P.: ECG analysis: a new approach in human identification. IEEE Trans. Instrum. Meas. 50(3), 808–812 (2001)

    Article  Google Scholar 

  6. Shen, T.W., Tompkins, W.J., Hu, Y.H.: One-lead ECG for identity verification. In: Proceedings 2nd Joint Conference on IEEE Engineering in Medicine and Biology Society and the Biomedical Engineering Society, Houston, pp. 280–305 (2002)

    Google Scholar 

  7. Stankovic, R.S., Falkowski, B.J.: The Haar wavelet transform: its status and achievements. Comput. Electr. Eng. 29, 25–44 (2003)

    Article  Google Scholar 

  8. Palaniappan, R., Krishnun, S.M.: Identifying individuals using ECG beats. In: Proceedings International Conference on Signal Processing and Communications, pp. 569–572 (2004)

    Google Scholar 

  9. Saechia, S., Koseeyaporn, J., Wardkein, P.: Human identification system based ECG signal. In: Proceedings TENCON 2005 IEEE Region 10, pp. 1–4 (2005)

    Google Scholar 

  10. Israel, S.A., Irvine, J.M., Cheng, A., Wiederhold, M.D., Wiederhold, B.K.: ECG to identify individuals. Pattern Recognit. 38, 133–142 (2005)

    Article  Google Scholar 

  11. Kim, K.-S., Yoon, T.-H., Lee, J.-W., Kim, D.-J., Koo, H.-S.: A robust human identification by normalized time-domain features of electrocardiogram. In: Proceedings 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, pp. 1114–1117 (2005)

    Google Scholar 

  12. Molina, G.G., Bruekers, F., Presura, C., Damstra, M., Veen, M.V.: Morphological synthesis of ECG signals for person authentication. In: Proceedings of Signal Processing Conference, Poznan, Poland (2007)

    Google Scholar 

  13. Watson, A.: Biometrics: easy to steal, hard to regain identity. Nature 449(7162), 535 (2007)

    Article  Google Scholar 

  14. Singh, Y.N., Gupta, P.: Quantitative evaluation of normalization techniques of matching scores in multimodal biometric systems. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 574–583. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74549-5_61

    Chapter  Google Scholar 

  15. Wubbeler, G., Stavridis, M., Kreiseler, D., Bousseljot, R., Elster, C.: Verification of humans using the Electrocardiogram. Pattern Recognit. Lett. 28(10), 1172–1175 (2007)

    Article  Google Scholar 

  16. Singh, Y.N., Gupta, P.: ECG to individual identification. In: Proceedings 2nd IEEE International Conference on Biometrics Theory, Applications and Systems, pp. 1–8 (2008)

    Google Scholar 

  17. Chan, A.D.C., Hamdy, M.M., Badre, A., Badee, V.: Wavelet distance measure for person identification using electrocardiograms. IEEE Trans. Instrum. Meas. 57(2), 248–253 (2008)

    Article  Google Scholar 

  18. Mane, V.M., Jadhav, D.V.: Review of multimodal biometrics: applications, challenges and research areas. Int. J. Biom. Bioinform. 3(5), 90–95 (2009)

    Google Scholar 

  19. Boumbarov, O., Velchev, Y., Sokolov, S.: ECG personal identification in subspaces using radial basis neural networks. In: Proceedings IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS 2009), pp. 446–451 (2009)

    Google Scholar 

  20. Singh, Y.N., Gupta, P.: A robust delineation approach of electrocardiographic P Waves. In: Proceedings of the 2009 IEEE Symposium on Industrial Electronics and Applications (ISIEA), vol. 2, pp. 846–849 (2009)

    Google Scholar 

  21. Singh, Y.N., Gupta, P.: A robust and efficient technique of T wave delineation from electrocardiogram. In: Proceedings of Second International Conference on Bioinspired Systems and Signal Processing (BIOSIGNALS), IEEE-EMB, pp. 146–154 (2009)

    Google Scholar 

  22. Singh, Y.N., Gupta, P.: Biometrics method for human identification using electrocardiogram. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 1270–1279. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01793-3_128

    Chapter  Google Scholar 

  23. Fatemian, S.Z., Hatzinakos, D.: A new ECG feature extractor for biometric recognition. In: Proceedings 16th International Conference on Digital Signal Processing, pp. 1–6 (2009)

    Google Scholar 

  24. Odinaka, I., Lai, P.-H., Kaplan, A.D., Sullivan, J.A.O., Sirevaag, E.J., Kristjansson, S.D., Sheffield, A.K., Rohrbaugh, J.W.: ECG biometrics: a robust short-time frequency analysis. In: Proceedings 2010 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2010)

    Google Scholar 

  25. Ye, C., Coimbra, M., Kumar, B.: Investigation of human identification using two-lead electrocardiogram ECG signals. In: Proceedings 4th IEEE International Conference Biometrics: Theory Applications and Systems (BTAS), pp. 1–8 (2010)

    Google Scholar 

  26. Coutinho, D.P., Fred, A.L.N., Figueiredo, M.A.T.: One-lead ECG based personal identification using Ziv-Merhav cross parsing. In: Proceedings of 20th International Conference on Pattern Recognition (ICPR), pp. 3858–3861 (2010)

    Google Scholar 

  27. Venkatesh, N., Jayaraman, S.: Human electrocardiogram for biometrics using DTW and FLDA. In: Proceedings of 20th International Conference on Pattern Recognition (ICPR), pp. 3838–3841 (2010)

    Google Scholar 

  28. Li, M., Narayanan, S.: Robust ECG biometrics by fusing temporal and cepstral information. In: Proceedings of 20th International Conference on Pattern Recognition (ICPR), pp. 1326–1329 (2010)

    Google Scholar 

  29. Tawfik, M.M., Kamal, H.S.T.: Human identification using QT signal and QRS complex of the ECG. Online J. Electron. Electr. Eng. 3(1), 383–387 (2011)

    Google Scholar 

  30. Singh, Y.N.: Challenges of UID environment. In: Proceedings of the UID National Conference on Impact of Aadhaar in Governance, pp. 37–45, December 2011

    Google Scholar 

  31. Singh, Y.N., Singh, S.K.: The state of information security. In: Proceedings of the Artificial Intelligence and Agents: Theory and Applications, pp. 363–367, December 2011

    Google Scholar 

  32. Singh, Y.N., Gupta, P.: Correlation based classification of heartbeats for individual identification. J. Soft Comput. 15, 449–460 (2011)

    Article  Google Scholar 

  33. Sae, S.I., Soraghan, J.J., Petropoulakis, L.: Electrocardiogram (ECG) biometric authentication using pulse active ratio (PAR). IEEE Trans. Inf. Forensics Secur. 6, 1315–1322 (2011)

    Article  Google Scholar 

  34. Tantawi, M., Revett, K., Tolba, M., Salem, A.: A novel feature set for deployment in ECG based biometrics. In: 2012 Seventh International Conference on International Conference of Computer Engineering Systems (ICCES), pp. 186–191 (2012)

    Google Scholar 

  35. Israel, S.A., Irvine, J.M.: Heartbeat biometrics: a sensing system perspective. Int. J. Cogn. Biom. 1(1), 39–65 (2012)

    Google Scholar 

  36. Luo, Y., Hargraves, R.H., Bai, O., Ward, K.R.: A hierarchical method for removal of baseline drift from biomedical signals application in ECG analysis. Sci. World J. 2013, 1–2 (2013)

    Google Scholar 

  37. Singh, Y.N., Singh, S.K.: Identifying individuals using eigenbeat features of electrocardiogram. J. Eng. 2013, 1–8 (2013)

    Google Scholar 

  38. Singh, Y.N., Singh, S.K.: A taxonomy of biometric system vulnerabilities and defences. J. Biom. 5, 137–159 (2013)

    Google Scholar 

  39. Wang, Z., Zhang, Y.: Research on ECG biometric in cardiac irregularity condition. In: Proceedings of IEEE International Conference on Medical Biometrics (ICMB), pp. 157–163 (2014)

    Google Scholar 

  40. Singh, Y.N.: Human recognition using fishers discriminant analysis of heartbeat interval features and ECG morphology. Neurocomputing 167, 322–335 (2015)

    Article  Google Scholar 

  41. Physionet, “Physiobank Archives”, Physikalisch-Technische Bundesanstalt, Abbestrasse 2–12, 10587 Berlin, Germany. https://www.physionet.org/physiobank/database/ptbdb. Accessed 2016

  42. Maths open Reference. http://in.mathworks.com/help/wavelet/ref/wavedec.html. Accessed June 2017

  43. Maths open Reference. http://www.mathopenref.com/lawofcosines.html. Accessed June 2017

  44. Maths open Reference. http://www.mathopenref.com/coordtrianglearea.html. Accessed June 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pal, A., Singh, Y.N. (2018). ECG Biometric Recognition. In: Ghosh, D., Giri, D., Mohapatra, R., Savas, E., Sakurai, K., Singh, L. (eds) Mathematics and Computing. ICMC 2018. Communications in Computer and Information Science, vol 834. Springer, Singapore. https://doi.org/10.1007/978-981-13-0023-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0023-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0022-6

  • Online ISBN: 978-981-13-0023-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics