[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Identifying Individuals Using Fourier and Discriminant Analysis of Electrocardiogram

  • Conference paper
  • First Online:
Mathematics and Computing (ICMC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 834))

Included in the following conference series:

  • 646 Accesses

Abstract

From the last one and a half decades, the electrocardiogram (ECG) has emerged as a new modality for human identification. The research shows that the people heartbeats recorded using diagnostic method called ECG exhibit discriminatory features that can distinguish themselves. The ECG as a biometric inherently provides liveness detection and robustness against falsification. This paper presents a novel method of ECG analysis for human identification using Fourier and linear discriminant analysis, which does not require detection of fiducial points of ECG wave. The method utilizes autocorrelation coefficients of filtered ECG signal, to extract significant features of it. The performance of the proposed method is evaluated on MIT-BIH arrhythmia and QT database of physionet. The experimental results show the equal error rate (EER) of 0.17% and 0.03% on MIT-BIH arrhythmia and QT database, respectively that outperform the other methods on these databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pouryayevali, S.: ECG biometrics: new algorithm and multimodal biometric system. Master of Applied Science thesis, University of Toronto (2015)

    Google Scholar 

  2. Singh, Y.N., Gupta, P.: ECG to individual identification. In: Proceedings of 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, BTAS 2008, pp. 1–8, October 2008

    Google Scholar 

  3. Singh, Y.N., Gupta, P.: Correlation based classification of heartbeats for individual identification. Soft Comput. 15(3), 449–460 (2009)

    Article  Google Scholar 

  4. Singh, Y.N., Singh, S.K.: Identifying individuals using eigenbeat features of electrocardiogram. J. Eng. 2013, 1–8 (2013)

    Google Scholar 

  5. Singh, Y.N., Singh, S.K., Gupta, P.: Fusion of electrocardiogram with unobtrusive biometrics: an efficient individual authentication system. Pattern Recognit. Lett. 33(14), 1932–1941 (2012)

    Article  Google Scholar 

  6. Singh, Y.N.: Human recognition using Fisher’s discriminant analysis of heartbeat interval features and ECG morphology. Neurocomputing 167, 322–335 (2015)

    Article  Google Scholar 

  7. Biel, L., Pettersson, O., Philipson, L., Wide, P.: ECG analysis: a new approach in human identification. IEEE Trans. Instrum. Meas. 50(3), 808–812 (2001)

    Article  Google Scholar 

  8. Shen, T.W., Tompkins, W.J., Hu, Y.H.: One-lead ECG for identity verification. In: 2nd Joint Conference of the IEEE Engineering in Medicine and Biology Society and the Biomedical Engineering Society, Houston, pp. 62–63 (2002)

    Google Scholar 

  9. Israel, S.A., Irvine, J.M., Andrew, C., Mark, D.W., Brenda, K.W.: ECG to identify individuals. Pattern Recognit. 38(1), 133–142 (2005)

    Article  Google Scholar 

  10. Wang, Y., Agrafioti, F., Hatzinakos, D., Plataniotis, K.N.: Analysis of human electrocardiogram for biometric recognition. EURASIP J. Adv. Signal Process. 2008, 1–11 (2008)

    Article  Google Scholar 

  11. Singh, Y.N., Gupta, P.: Biometrics method for human identification using electrocardiogram. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 1270–1279. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01793-3_128

    Chapter  Google Scholar 

  12. Plataniotis, K., Hatzinakos, D., Lee, J.: ECG biometric recognition without fiducial detection. In: Proceedings of Biometrics Symposiums, BSYM, Baltimore, Maryland, USA (2006)

    Google Scholar 

  13. Agrafioti, F., Hatzinakos, D.,: ECG based recognition using second order statistics. In: IEEE Sixth Annual Communication Networks and Services Research Conference, Canada, pp. 82–87 (2008)

    Google Scholar 

  14. Srivastva, R., Singh, Y.N.: ECG biometric analysis using Walsh-Hadamard transform. In: Kolhe, M.L., et al. (eds.) Advances in Data and Information Sciences. LNNS, vol. 38. Springer (2017). https://doi.org/10.1007/978-981-10-8360-0_19

  15. Srivastva, R., Singh, Y.N.: Human recognition using discrete cosine transform and discriminant analysis of ECG. In: Proceedings of IEEE 2017 Fourth International Conference on Image Information Processing, JUIT, Solan, pp. 368–372 (2017)

    Google Scholar 

  16. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)

    Article  Google Scholar 

  17. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, India (2000)

    MATH  Google Scholar 

  18. Singh, Y.N.: Individual identification using linear projection of heartbeat features. Appl. Comput. Intell. Soft Comput. 2014, 1–14 (2014)

    Article  Google Scholar 

  19. Wubbeler, G., Stavridis, M., Kreiseler, D., Bousseljot, R.D., Elster, C.: Verification of humans using the electrocardiogram. Pattern Recognit. Lett. 28, 1172–1175 (2007)

    Article  Google Scholar 

  20. Chan, A.D.C., Hamdy, M.M., Badre, A., Badee, V.: Wavelet distance measure for person identification using electrocardiograms. IEEE Trans. Instrum. Meas. 57(2), 248–253 (2008)

    Article  Google Scholar 

  21. Li, M., Narayanan, S.: Robust ECG biometrics by fusing temporal and cepstral information. In: 2010 20th International Conference Pattern Recognition, ICPR, pp. 1326–1329, August 2010

    Google Scholar 

  22. PhysioNet: PhysioBank archives. Massachusetts Institute of Technology Cambridge. http://www.physionet.org/physiobank/database/#ecg

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjeet Srivastva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastva, R., Singh, Y.N. (2018). Identifying Individuals Using Fourier and Discriminant Analysis of Electrocardiogram. In: Ghosh, D., Giri, D., Mohapatra, R., Savas, E., Sakurai, K., Singh, L. (eds) Mathematics and Computing. ICMC 2018. Communications in Computer and Information Science, vol 834. Springer, Singapore. https://doi.org/10.1007/978-981-13-0023-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0023-3_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0022-6

  • Online ISBN: 978-981-13-0023-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics