[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

egoStellar: Visual Analysis of Anomalous Communication Behaviors from Egocentric Perspective

  • Conference paper
  • First Online:
New Trends in Computer Technologies and Applications (ICS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1013))

Included in the following conference series:

Abstract

Detection and analysis of anomalous communication behaviors in cellar networks are extremely important in identifying potential advertising agency or fraud users. Visual analytics benefits domain experts in this problem for its intuitiveness and friendly interactive interface in presenting and exploring large volumes of data. In this paper, we propose a visual analytics system, egoStellar, to interactively explore the communication behaviors of mobile users from an ego network perspective. Ego network is composed of a centered individual and the relationships between the ego and his/her direct contacts (alters). Based on the graph model, egoStellar presents an overall statistical view to explore the distribution of mobile users for behavior inspection, a group view to classify the users and extract features for anomalous detection and comparison, and a ego-centric view to show the interactions between an ego and the alters in details. Our system can help analysts to interactively explore the communication patterns of mobile users from egocentric perspectives. Thus, this system makes it easier for the government or operators to visually inspect the massive communication behaviors in a intuitive way to detect and analyze anomalous users. Furthermore, our design can provide the researchers a good opportunity to observe the personal communication patterns to uncover new knowledge about human social interactions. Our proposed design can be applied to other fields where network structure exists. We evaluated egoStellar with real datasets containing the anomalous users with extremely large contacts in a short time period. The results show our system is effective in identifying anomalous communication behaviors, and its front-end interactive visualizations are intuitive and useful for analysts to discover insights in data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Manyika, J., et al.: Big data: the next frontier for innovation, competition, and productivity (2011). http://www.mckinsey.com/businessfunctions/business-technology/our-insights/big-data-the-nextfrontier-for-innovation. Accessed 10 Aug 2016

  2. Barabási, A.L.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211 (2005)

    Article  Google Scholar 

  3. Borgatti, S.P., Mehra, A.M., Brass, D.J., Labianca, J.: Network analysis in the social sciences. Science 323, 892–895 (2009)

    Article  Google Scholar 

  4. Roberts, S.G.B., Dunbar, R.I.M.: Communication in social networks: effects of kinship, network size, and emotional closeness. Pers. Relat. 18, 439–452 (2011)

    Article  Google Scholar 

  5. Onnela, J.P., et al.: Analysis of a large-scale weighted network of one-to-one human communication. New J. Phys. 9, 179–206 (2007)

    Article  Google Scholar 

  6. Eagle, N., Pentland, A.S., Lazer, D.: Inferring friendship network structure by using mobile phone data. Proc. Natl. Acad. Sci. U.S.A. 106, 15274–15278 (2009)

    Article  Google Scholar 

  7. Japkowicz, N., Stefanowski, J.: A machine learning perspective on big data analysis. In: Japkowicz, N., Stefanowski, J. (eds.) Big Data Analysis: New Algorithms for a New Society. SBD, vol. 16, pp. 1–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26989-4_1

    Chapter  Google Scholar 

  8. Hey, T.: The fourth paradigm – data-intensive scientific discovery. In: Kurbanoğlu, S., Al, U., Erdoğan, P.L., Tonta, Y., Uçak, N. (eds.) IMCW 2012. CCIS, vol. 317, p. 1. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33299-9_1

    Chapter  Google Scholar 

  9. Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.: Visual analytics: definition, process, and challenges. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 154–175. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70956-5_7

    Chapter  Google Scholar 

  10. Mazza, R.: Introduction to Information Visualization. Springer, London (2009). https://doi.org/10.1007/978-1-84800-219-7

    Book  Google Scholar 

  11. Wang, Q., Gao, J., Zhou, T., Hu, Z., Tian, H.: Critical size of ego communication networks. Europhys. Lett. 114, 58004 (2016)

    Article  Google Scholar 

  12. Onnela, J.P., et al.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. U.S.A. 104, 7332–7336 (2007)

    Article  Google Scholar 

  13. Saramäki, J., Leicht, E.A., López, E., Roberts, S.G.B., Reed-Tsochas, F., Dunbar, R.I.M.: Persistence of social signatures in human communication. Proc. Natl. Acad. Sci. U.S.A. 111, 942–947 (2014)

    Article  Google Scholar 

  14. Shi, L., Wang, C., Wen, Z., Qu, H., Liao, Q.: 1.5D egocentric dynamic network visualization. IEEE Trans. Vis. Comput. Graphics 21, 624–637 (2015)

    Article  Google Scholar 

  15. Liu, Q., Hu, Y., Shi, L., Mu, X., Zhang, Y., Tang, J.: EgoNetCloud: event based egocentric dynamic network visualization. In: IEEE Conference on Visual Analytics Science and Technology, pp. 65–72 (2015)

    Google Scholar 

  16. Wu, Y., Pitipornvivat, N., Zhao, J., Yang, S., Huang, G., Qu, H.: EgoSlider: visual analysis of egocentric network evolution. IEEE Trans. Vis. Comput. Graphics 22, 260–269 (2016)

    Article  Google Scholar 

  17. Cao, N., Shi, C., Lin, S., Lu, J., Lin, Y., Lin, C.: TargetVue: visual analysis of anomalous user behaviors in online communication systems. IEEE Trans. Vis. Comput. Graph. 22, 280–289 (2016)

    Article  Google Scholar 

  18. Liu, D., Guo, F., Deng, B., Wu, Y., Qu, H.: EgoComp: a nodelink based technique for visual comparison of ego-network (2016). http://vacommunity.org/egas2015/papers/IEEEEGAS2015-DongyuLiu.pdf. Accessed 10 Aug 2016

  19. Zhou, W.X., Sornette, D., Hill, R.A., Dunbar, R.I.M.: Discrete hierarchical organization of social group sizes. Proc. R. Soc. B 272, 439–444 (2005)

    Article  Google Scholar 

  20. Brzozowski, M.J., Romero, D.M.: Who should I follow? Recommending people in directed social networks. In: Fifth International AAAI Conference on Weblogs and Social Media, pp. 458–461 (2011)

    Google Scholar 

  21. Zhu, Y., Zhang, X., Sun, G., Tang, M., Zhou, T., Zhang, Z.: Influence of reciprocal links in social networks. PLoS One 9, e103007 (2014)

    Article  Google Scholar 

  22. Levandowsky, M., Winter, D.: Distance between sets. Nature 234, 34–35 (1971)

    Article  Google Scholar 

  23. Brown, J.J., Reingen, P.H.: Social ties and word-of-mouth referral behavior. J. Consum. Res. 14, 350–362 (1987)

    Article  Google Scholar 

  24. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. HotCloud 10, 95 (2010)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61502083 and 61872066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Han , Qing Wang , Lirui Wei , Yuwei Zhang , Yunbo Cao or Jiansu Pu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, M., Wang, Q., Wei, L., Zhang, Y., Cao, Y., Pu, J. (2019). egoStellar: Visual Analysis of Anomalous Communication Behaviors from Egocentric Perspective. In: Chang, CY., Lin, CC., Lin, HH. (eds) New Trends in Computer Technologies and Applications. ICS 2018. Communications in Computer and Information Science, vol 1013. Springer, Singapore. https://doi.org/10.1007/978-981-13-9190-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9190-3_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9189-7

  • Online ISBN: 978-981-13-9190-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics