[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Survey of Textbased Chatbot in Perspective of Recent Technologies

  • Conference paper
  • First Online:
Computational Intelligence, Communications, and Business Analytics (CICBA 2018)

Abstract

Chatbots are computer programs capable to carry a conversation with human. They can be seen as an artificial agent designed to serve the purpose of conversation with the end user. Chatbots are gaining popularity especially in business and health sector as they have the potential to automate service and reduce human efforts. Widespread use of Apps, maturation of Artificial Intelligence (AI) technologies and integration of Natural Language Processing (NLP) fuels up the growth of chatbot. In this paper, we present different models of chatbots along with an architectural overview of computationally intelligent chatbot in context of recent technologies. In the three layer architecture, we have given insights of how the NLP, Natural Language Understanding (NLU) and Decision engine work together with Knowledge Base to achieve AI using Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM). In addition, we also discuss different chatbot platforms and development frameworks of recent times. Our core emphasis is on analysis of recent development approaches of textbased conversational systems. We identify few challenges in intelligent chatbot development that may be helpful for future research works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramesh, K., Ravishankaran, S., Joshi, A., Chandrasekaran, K.: A survey of design techniques for conversational agents. In: Kaushik, S., Gupta, D., Kharb, L., Chahal, D. (eds.) ICICCT 2017. CCIS, vol. 750, pp. 336–350. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6544-6_31

    Chapter  Google Scholar 

  2. Machinery, C.: Computing machinery and intelligence-AM turing. Mind 59(236), 433 (1950)

    MathSciNet  Google Scholar 

  3. Weizenbaum, J.: Elizaa computer program for the study of natural language communication between man and machine. Commun. ACM 9(1), 36–45 (1966)

    Article  Google Scholar 

  4. Perez-Marin, D.: Conversational Agents and Natural Language Interaction: Techniques and Effective Practices: Techniques and Effective Practices. IGI Global (2011)

    Google Scholar 

  5. Mauldin, M.L.: Chatterbots, tinymuds, and the turing test: entering the loebner prize competition. In: AAAI, vol. 94, pp. 16–21 (1994)

    Google Scholar 

  6. McTear, M.F.: Spoken Dialogue Technology: Toward the Conversational User Interface. Springer, London (2004). https://doi.org/10.1007/978-0-85729-414-2

    Book  Google Scholar 

  7. Lester, J., Branting, K., Mott, B.: Conversational agents. In: The Practical Handbook of Internet Computing, pp. 220–240 (2004)

    Google Scholar 

  8. Wallace, R.: The elements of AIML style. Alice AI Foundation (2003)

    Google Scholar 

  9. Marietto, M.D.G.B., et al.: Artificial Intelligence Markup Language: A Brief Tutorial. CoRR abs/1307.3091 (2013)

    Google Scholar 

  10. Chowdhury, G.G.: Natural language processing. Ann. Rev. Inf. Sci. Technol. 37(1), 51–89 (2003)

    Article  MathSciNet  Google Scholar 

  11. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  12. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

    MATH  Google Scholar 

  13. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  14. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  15. Chen, H., Liu, X., Yin, D., Tang, J.: A survey on dialogue systems: Recent advances and new frontiers. arXiv preprint arXiv:1711.01731 (2017)

  16. Deshpande, A., Shahane, A., Gadre, D., Deshpande, M., Joshi, P.M.: A survey of various chatbot implementation techniques. Int. J. Comput. Eng. Appl. 11 (2017). ISSN 2321-3469

    Google Scholar 

  17. Mobgea: The Power of Chatbots: The art of Conversation. White Paper (2017)

    Google Scholar 

  18. Shah, V.: Autopsy of a Chatbot: The 7 core components needed for a successful implementation (2017). https://medium.com/@vihangshah/the-magnificent-7-core-components-needed-for-a-successful-implementation-7b4e0d723e33

  19. Kang, A.: Understanding the Differences Between Alexa, Api.ai, Wit.ai, and LUIS (2017). https://medium.com/@abraham.kang/understanding-the-differences-between-alexa-api-ai-wit-ai-and-luis-cortana-2404ece0977c

  20. Berg, M.M.: Modelling of natural dialogues in the context of speech-based information and control systems (2014)

    Google Scholar 

  21. Bruni, E., Fernandez, R.: Adversarial evaluation for open-domain dialogue generation. In: Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, pp. 284–288 (2017)

    Google Scholar 

  22. Shen, X., et al.: A conditional variational framework for dialog generation. arXiv preprint arXiv:1705.00316 (2017)

  23. Williams, J., Raux, A., Ramachandran, D., Black, A.: The dialog state tracking challenge. In: Proceedings of the SIGDIAL 2013 Conference, pp. 404–413 (2013)

    Google Scholar 

  24. Socher, R., Huang, E.H., Pennin, J., Manning, C.D., Ng, A.Y.: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In: Advances in Neural Information Processing Systems, pp. 801–809 (2011)

    Google Scholar 

  25. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  26. Schwenk, H.: Continuous space translation models for phrase-based statistical machine translation. In: Proceedings of COLING 2012: Posters, pp. 1071–1080 (2012)

    Google Scholar 

  27. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  28. Abolafia, D.: A Recurrent Neural Network Music Generation Tutorial (2017). https://magenta.tensorflow.org

  29. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  30. Srivastava, P.: Essentials of Deep Learning: Introduction to Long Short Term Memory (2017). https://www.analyticsvidhya.com/

  31. Neubig, G.: Neural machine translation and sequence-to-sequence models: a tutorial. arXiv preprint arXiv:1703.01619 (2017)

  32. Chablani, M.: Sequence to sequence model: Introduction and concepts (2017). https://towardsdatascience.com

  33. Zhou, H., Huang, M., et al.: Context-aware natural language generation for spoken dialogue systems. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2032–2041 (2016)

    Google Scholar 

  34. Dušek, O., Jurčíček, F.: Sequence-to-sequence generation for spoken dialogue via deep syntax trees and strings. arXiv preprint arXiv:1606.05491 (2016)

  35. Dušek, O., Jurčíček, F.: A context-aware natural language generator for dialogue systems. arXiv preprint arXiv:1608.07076 (2016)

  36. Zamanirad, S., Benatallah, B., Chai Barukh, M., Casati, F., Rodriguez, C.: Programming bots by synthesizing natural language expressions into API invocations. In: Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering, pp. 832–837. IEEE Press (2017)

    Google Scholar 

  37. Rahman, A., Al Mamun, A., Islam, A.: Programming challenges of chatbot: current and future prospective. In: 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), pp. 75–78. IEEE (2017)

    Google Scholar 

  38. Couto, J.: Building a Chatbot: Analysis and limitations of modern platforms (2017). https://tryolabs.com/blog/2017/01/25/building-a-chatbot-analysis–limitations-of-modern-platforms

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhriguraj Borah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borah, B., Pathak, D., Sarmah, P., Som, B., Nandi, S. (2019). Survey of Textbased Chatbot in Perspective of Recent Technologies. In: Mandal, J., Mukhopadhyay, S., Dutta, P., Dasgupta, K. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2018. Communications in Computer and Information Science, vol 1031. Springer, Singapore. https://doi.org/10.1007/978-981-13-8581-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8581-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8580-3

  • Online ISBN: 978-981-13-8581-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics