[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Analysis and Comparison of Uncertain Means Clustering Algorithm

  • Conference paper
  • First Online:
Geo-informatics in Sustainable Ecosystem and Society (GSES 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 980))

  • 868 Accesses

Abstract

Clustering analysis is an important method of multivariate statistical analysis. It has important applications in pattern recognition, artificial intelligence, automatic control and other fields. An iterative algorithm called uncertain means clustering is defined by analyzing the contribution of the features to the sample and calculating the degree of membership based on the weight. In this paper, we use the uncertain means clustering algorithm to cluster IRIS data to test the clustering accuracy, convergence speed and robustness of the algorithm. At the same time, compared with the traditional clustering algorithm, which K-Means clustering algorithm and KNN clustering algorithm, the experimental results show that the uncertain means clustering algorithm has good performance in the accuracy and convergence speed of the sample data sets, and is an effective unsupervised clustering algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jain, A.K., Flynn, P.J.: Image segmentation using clustering. In: Ahuja, N., Bowyer, K. (eds.) Advances in Image Understanding: A Festchrift for Azriel Rosenfeld, pp. 65–83. IEEE Press, Piscataway (1996)

    Google Scholar 

  2. Cades, I., Smyth, P., Mannila, H.: Probabilistic modeling of transactional data with applications to profiling, visualization and prediction, sigmod. In: Proceedings of the 7th ACM SIGKDD, pp. 37–46. ACM Press, San Francisco (2001). http://www.sigkdd.org/kdd2001

  3. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  4. 刘开第, 王义闹, 吴和琴. 四种不确定性信息概念与联系. 华中理工大学学报 (4), 68–70 (1999)

    Google Scholar 

  5. 刘开第, 李万庆, 庞彦军. 未确知集. 数学的实践与认识, 36(10), 197–204 (2006)

    Google Scholar 

  6. 刘开第, 庞彦军, 吴和琴等. 信息及其数学表达. 系统工程理论与实践 (8), 91–93 (1999)

    Google Scholar 

  7. 管祥兵, 刘历波, 代兰, 任向阳. 基于未确聚类的动态联盟伙伴选择研究. 河北建筑科技学院学报 23(1), 44–45 (2006)

    Google Scholar 

  8. 曹庆奎, 任向阳, 刘琛, 等. 基于粗集-未确知测度模型的企业技术创新能力评价研究. 系统工程理论与实践, 26(4), 32–34 (2006)

    Google Scholar 

  9. 刘开第, 庞彦军, 孙光勇. 城市环境质量的未确知测度评价. 系统工程理论与实践, 19(12), 31–32 (1999)

    Google Scholar 

  10. 庞彦军, 刘立民, 刘开第. 未确知均值聚类. 河北工程大学学报(自然科学版) 27(4), 98–100 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nini Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, N., Qi, L., Qin, X. (2019). Analysis and Comparison of Uncertain Means Clustering Algorithm. In: Xie, Y., Zhang, A., Liu, H., Feng, L. (eds) Geo-informatics in Sustainable Ecosystem and Society. GSES 2018. Communications in Computer and Information Science, vol 980. Springer, Singapore. https://doi.org/10.1007/978-981-13-7025-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7025-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7024-3

  • Online ISBN: 978-981-13-7025-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics