[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Optimal Neuro-Fuzzy Inference System for MR Image Classification and Multiple Scleroses Detection

  • Conference paper
  • First Online:
Bio-inspired Computing – Theories and Applications (BIC-TA 2016)

Abstract

In the present article, we propose a new approach for the segmentation of the MR images of the Multiple Sclerosis (MS) which is an autoimmune inflammatory disease affecting the central nervous system. Our algorithm of segmentation is composed of three stages: segmentation of the brain into regions using the algorithm FCM (Fuzzy C-Means) in order to obtain the characterization of the different healthy tissues (White matter, grey matter and cerebrospinal fluid (CSF)), the elimination of the atypical data (outliers) of the white matter by the optimization algorithm PSOBC (Particle Swarm Optimization-Based image Clustering), finally, the use of a Mamdani-type fuzzy model to extract the MS lesions among all the absurd data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miller, D.H.: Biomarkers and surrogate outcomes in neurodegenerative disease: lessons from multiple sclerosis. NeuroRX 1(2), 284–294 (2004)

    Article  Google Scholar 

  2. Daniel, G.-L., Sylvain, P., Douglas, A., Louis, C., Christian, B.: Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis. In: IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers (IEEE) Results and Discussion (2011)

    Google Scholar 

  3. Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, D., Suetens, P.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE TMI 20(8), 677–689 (2001)

    Google Scholar 

  4. Anbeek, P., Vinchen, K.L., van Osch, M.J.P., Bisschops, R.H.C., van der Grond, J.: Probabilistic segmentation of white matter lesions in MR imaging. NeuroImage 21, 1037–1044 (2004)

    Google Scholar 

  5. Souplet, J.C., Lebrun, C., Anyche, N., Malandain, G.: An automatic segmentation of T2-FLAIR multiple sclerosis lesions. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation (2008)

    Google Scholar 

  6. Dugas-Phocion, G., Gonzalez, M.A., Lebrun, C., Chanalet, S., Bensa, C., Malandain, G., Ayache, N.: Hierarchical segmentation of multiple sclerosis lesions multi-sequence MRI. In: ISBI08 (2008)

    Google Scholar 

  7. Garcia-Lorenzo, D., Prima, S., Morrissey, S.P., Barillot, C.: A robust expectation-maximization algorithm for multiple sclerosis lesion segmentation. Segmentation in the clinic: a grand challenge II: lesion segmentation (2008)

    Google Scholar 

  8. Prastawa, M., Guido, G.: Automatic MS lesion segmentation by outlier detection and information theoretic region partitioning. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation (2008)

    Google Scholar 

  9. Wu, Y., Warfield, S.K., Tan, I.L., Wessl III, W.M., Meier, D.S., Van Schijndel, R.A., Barkhof, F., Guttmann, C.: Automated segmentation of multiple sclerosis lesion subtype with multichannel MRI. NeuroImage 32, 1025–1215 (2006)

    Google Scholar 

  10. Tu, Z., Narr, K., Dinov, I., Dollar, P., Thompson, P., Toga, A.: Brain anatomical structure parsing by hybrid discriminative/generative models. IEEE TMI 27(4), 495–508 (2008)

    Google Scholar 

  11. Morra, J., Tu, Z., Toga, A., Thompson, P.: Automatic segmentation of MS lesions using a contextual model for the MICCAI grand challenge. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation (2008)

    Google Scholar 

  12. Anbeek, P., Vinchen K.L., Viergever, M.A.: Antomated MS-lesion segmentation by K-nearest neighbor classification. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation (2008)

    Google Scholar 

  13. Bazin, P.-L., Pham, D.L.: Statistical and topological atlas based brain image segmentation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 94–101. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75757-3_12

    Chapter  Google Scholar 

  14. Benaichouche, A.N., Oulhadj, H., Siarry, P.: Improved spatial fuzzy C-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction. Digit. Signal Proc. 23, 1390–1400 (2013)

    Article  MathSciNet  Google Scholar 

  15. Bezdek, J., Hall, I., Clarke, L.: Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20, 1033–1048 (1993)

    Article  Google Scholar 

  16. Ghosh, S., Kumar, S.: Comparative analysis of K-means and fuzzy C-means algorithms. Int. J. Adv. Comput. Sci. Appl. 4(4), 35–39 (2013)

    Google Scholar 

  17. Tejwant, S., Manish, M.: Performance comparison of fuzzy C means with respect to other clustering algorithm. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(5), 89–93 (2014)

    Google Scholar 

  18. Bezdek, J.C.: Fuzzy mathematics in pattern classification. Ph.D. dissertation, Cornell University, Ithaca, NY (1973)

    Google Scholar 

  19. Zouaoui, H., Moussaoui, A.: Clustering par Fusion Floue de Donnes Appliqu la Segmentation dImages IRM Crbrales. CIIA, von CEUR Workshop Proceedings vol. 547. CEUR-WS.org (2009)

    Google Scholar 

  20. Premalatha, K., Natarajan, A.M.: A new approach for data clustering based on PSO with local search. Comput. Inform. Sci. 1(4), 139–145 (2008)

    Google Scholar 

  21. El Dor, A., Lepagnot, J., Nakib, A., Siarry, P.: PSO-2S optimization algorithm for brain MRI segmentation. In: Pan, J.S., Krömer, P., Snášel, V. (eds.) Genetic and Evolutionary Computing, pp. 13–22. Springer, Cham (2014)

    Chapter  Google Scholar 

  22. Selvi, V., Umarani, R.: Comparative analysis of ant colony and particle swarm optimization techniques. Int. J. Comput. Appl. (0975–8887) 5(4), 1–6 (2010)

    Google Scholar 

  23. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization, vol. 3, pp. 1945–1950 (1999)

    Google Scholar 

  24. Aït-Ali, L.S., Prima, S., Edan, G., Barillot, C.: Longitudinal segmentation of MS lesions in multimodal brain MRI. In: 15ème Congrès Francophone AFRIF/AFIA de Reconnaissance des Formes et Intelligence Artificielle (RFIA), Tours, France, Janvier (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakima Zouaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Zouaoui, H., Moussaoui, A., Taleb-Ahmed, A., Oussalah, M. (2016). A New Optimal Neuro-Fuzzy Inference System for MR Image Classification and Multiple Scleroses Detection. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-10-3611-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3611-8_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3610-1

  • Online ISBN: 978-981-10-3611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics