Abstract
In the present article, we propose a new approach for the segmentation of the MR images of the Multiple Sclerosis (MS) which is an autoimmune inflammatory disease affecting the central nervous system. Our algorithm of segmentation is composed of three stages: segmentation of the brain into regions using the algorithm FCM (Fuzzy C-Means) in order to obtain the characterization of the different healthy tissues (White matter, grey matter and cerebrospinal fluid (CSF)), the elimination of the atypical data (outliers) of the white matter by the optimization algorithm PSOBC (Particle Swarm Optimization-Based image Clustering), finally, the use of a Mamdani-type fuzzy model to extract the MS lesions among all the absurd data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Miller, D.H.: Biomarkers and surrogate outcomes in neurodegenerative disease: lessons from multiple sclerosis. NeuroRX 1(2), 284–294 (2004)
Daniel, G.-L., Sylvain, P., Douglas, A., Louis, C., Christian, B.: Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis. In: IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers (IEEE) Results and Discussion (2011)
Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, D., Suetens, P.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE TMI 20(8), 677–689 (2001)
Anbeek, P., Vinchen, K.L., van Osch, M.J.P., Bisschops, R.H.C., van der Grond, J.: Probabilistic segmentation of white matter lesions in MR imaging. NeuroImage 21, 1037–1044 (2004)
Souplet, J.C., Lebrun, C., Anyche, N., Malandain, G.: An automatic segmentation of T2-FLAIR multiple sclerosis lesions. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation (2008)
Dugas-Phocion, G., Gonzalez, M.A., Lebrun, C., Chanalet, S., Bensa, C., Malandain, G., Ayache, N.: Hierarchical segmentation of multiple sclerosis lesions multi-sequence MRI. In: ISBI08 (2008)
Garcia-Lorenzo, D., Prima, S., Morrissey, S.P., Barillot, C.: A robust expectation-maximization algorithm for multiple sclerosis lesion segmentation. Segmentation in the clinic: a grand challenge II: lesion segmentation (2008)
Prastawa, M., Guido, G.: Automatic MS lesion segmentation by outlier detection and information theoretic region partitioning. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation (2008)
Wu, Y., Warfield, S.K., Tan, I.L., Wessl III, W.M., Meier, D.S., Van Schijndel, R.A., Barkhof, F., Guttmann, C.: Automated segmentation of multiple sclerosis lesion subtype with multichannel MRI. NeuroImage 32, 1025–1215 (2006)
Tu, Z., Narr, K., Dinov, I., Dollar, P., Thompson, P., Toga, A.: Brain anatomical structure parsing by hybrid discriminative/generative models. IEEE TMI 27(4), 495–508 (2008)
Morra, J., Tu, Z., Toga, A., Thompson, P.: Automatic segmentation of MS lesions using a contextual model for the MICCAI grand challenge. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation (2008)
Anbeek, P., Vinchen K.L., Viergever, M.A.: Antomated MS-lesion segmentation by K-nearest neighbor classification. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation (2008)
Bazin, P.-L., Pham, D.L.: Statistical and topological atlas based brain image segmentation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 94–101. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75757-3_12
Benaichouche, A.N., Oulhadj, H., Siarry, P.: Improved spatial fuzzy C-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction. Digit. Signal Proc. 23, 1390–1400 (2013)
Bezdek, J., Hall, I., Clarke, L.: Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20, 1033–1048 (1993)
Ghosh, S., Kumar, S.: Comparative analysis of K-means and fuzzy C-means algorithms. Int. J. Adv. Comput. Sci. Appl. 4(4), 35–39 (2013)
Tejwant, S., Manish, M.: Performance comparison of fuzzy C means with respect to other clustering algorithm. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(5), 89–93 (2014)
Bezdek, J.C.: Fuzzy mathematics in pattern classification. Ph.D. dissertation, Cornell University, Ithaca, NY (1973)
Zouaoui, H., Moussaoui, A.: Clustering par Fusion Floue de Donnes Appliqu la Segmentation dImages IRM Crbrales. CIIA, von CEUR Workshop Proceedings vol. 547. CEUR-WS.org (2009)
Premalatha, K., Natarajan, A.M.: A new approach for data clustering based on PSO with local search. Comput. Inform. Sci. 1(4), 139–145 (2008)
El Dor, A., Lepagnot, J., Nakib, A., Siarry, P.: PSO-2S optimization algorithm for brain MRI segmentation. In: Pan, J.S., Krömer, P., Snášel, V. (eds.) Genetic and Evolutionary Computing, pp. 13–22. Springer, Cham (2014)
Selvi, V., Umarani, R.: Comparative analysis of ant colony and particle swarm optimization techniques. Int. J. Comput. Appl. (0975–8887) 5(4), 1–6 (2010)
Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization, vol. 3, pp. 1945–1950 (1999)
Aït-Ali, L.S., Prima, S., Edan, G., Barillot, C.: Longitudinal segmentation of MS lesions in multimodal brain MRI. In: 15ème Congrès Francophone AFRIF/AFIA de Reconnaissance des Formes et Intelligence Artificielle (RFIA), Tours, France, Janvier (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zouaoui, H., Moussaoui, A., Taleb-Ahmed, A., Oussalah, M. (2016). A New Optimal Neuro-Fuzzy Inference System for MR Image Classification and Multiple Scleroses Detection. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-10-3611-8_45
Download citation
DOI: https://doi.org/10.1007/978-981-10-3611-8_45
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3610-1
Online ISBN: 978-981-10-3611-8
eBook Packages: Computer ScienceComputer Science (R0)