Abstract
An image is generally formed as the composition of salient structures and complex textures. While structures are important for human perception and image analysis, structure extraction from textures remains a challenging issue to be investigated. Even though several methods have been proposed to do this job, they commonly have to balance between texture removing and structure preservation. One problem is that few methods take structural contours into consideration. In this paper, we propose a new learning-based weighted total variation (LTV)model, where the weights are learned from different kinds of texture images to well discriminate pixels belonging to structural contours from pixels belonging to textures. The Chambolles projection method is utilized to solve the optimization problem. Experimental results show that compared with the competing methods, the proposed algorithm performs better in preserving sharp structures while removing textures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Arnheim, R.: Art and Visual Perception: A Psychology of the Creative Eye. University of California Press, Berkeley (1954)
Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006)
Baek, J., Jacobs, D.E.: Accelerating spatially varying gaussian filters. ACM Trans. Graph. (TOG) 29, 169 (2010). ACM
Bi, S., Han, X., Yu, Y.: An l1 image transform for edge-preserving smoothing and scene-level intrinsic decomposition. ACM Trans. Graph. (TOG) 34(4), 78 (2015)
Bresson, X., Esedoḡlu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)
Chen, L., Zhang, H., Ren, D., Zhang, D., Zuo, W.: Fast augmented Lagrangian method for image smoothing with hyper-laplacian gradient prior. In: Li, S., Liu, C., Wang, Y. (eds.) CCPR 2014. CCIS, vol. 484, pp. 12–21. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45643-9_2
Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. (TOG) 21, 257–266 (2002). ACM
Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. (TOG) 27, 67 (2008). ACM
Fattal, R.: Edge-avoiding wavelets and their applications. ACM Trans. Graph. (TOG) 28(3), 22 (2009)
Fattal, R., Agrawala, M., Rusinkiewicz, S.: Multiscale shape and detail enhancement from multi-light image collections. ACM Trans. Graph. 26(3), 51 (2007)
He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15549-9_1
Kass, M., Solomon, J.: Smoothed local histogram filters. ACM Trans. Graph. (TOG) 29, 100 (2010). ACM
Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. Int. J. Comput. Vis. 43(1), 7–27 (2001)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)
van de Weijer, J., Van den Boomgaard, R.: Local mode filtering. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, p. 428. IEEE (2001)
Weiss, B.: Fast median and bilateral filtering. In: ACM Trans. Graph. (TOG) 25, 519–526 (2006). ACM
Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via l0 gradient minimization. ACM Trans. Graph. (TOG) 30, 174 (2011). ACM
Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. (TOG) 31(6), 139 (2012)
Yang, Q.: Recursive bilateral filtering. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 399–413. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33718-5_29
Zhang, Q., Shen, X., Xu, L., Jia, J.: Rolling guidance filter. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 815–830. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10578-9_53
Zhang, Q., Xu, L., Jia, J.: 100+ times faster weighted median filter (WMF). In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2830–2837 (2014)
Acknowledgement
This work is partly support by the National Science Foundation of China (NSFC) project under the contract No. 61271093.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zheng, S., Song, C., Zhang, H., Yan, Z., Zuo, W. (2016). Learning-Based Weighted Total Variation for Structure Preserving Texture Removal. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 663. Springer, Singapore. https://doi.org/10.1007/978-981-10-3005-5_13
Download citation
DOI: https://doi.org/10.1007/978-981-10-3005-5_13
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3004-8
Online ISBN: 978-981-10-3005-5
eBook Packages: Computer ScienceComputer Science (R0)