[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning-Based Weighted Total Variation for Structure Preserving Texture Removal

  • Conference paper
  • First Online:
Pattern Recognition (CCPR 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 663))

Included in the following conference series:

Abstract

An image is generally formed as the composition of salient structures and complex textures. While structures are important for human perception and image analysis, structure extraction from textures remains a challenging issue to be investigated. Even though several methods have been proposed to do this job, they commonly have to balance between texture removing and structure preservation. One problem is that few methods take structural contours into consideration. In this paper, we propose a new learning-based weighted total variation (LTV)model, where the weights are learned from different kinds of texture images to well discriminate pixels belonging to structural contours from pixels belonging to textures. The Chambolles projection method is utilized to solve the optimization problem. Experimental results show that compared with the competing methods, the proposed algorithm performs better in preserving sharp structures while removing textures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/orhanf/libORF.

  2. 2.

    http://cn.mathworks.com/help/stats/index.html.

  3. 3.

    http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html.

  4. 4.

    https://github.com/rasmusbergpalm/DeepLearnToolbox.

  5. 5.

    http://www.cse.cuhk.edu.hk/~leojia/projects/texturesep/database.html.

  6. 6.

    http://www.cs.huji.ac.il/~danix/epd/.

  7. 7.

    http://www.cse.cuhk.edu.hk/~leojia/projects/L0smoothing/index.html.

  8. 8.

    https://github.com/soundsilence/L1Flattening.

  9. 9.

    http://www.cse.cuhk.edu.hk/~leojia/projects/texturesep/index.html.

  10. 10.

    http://www.cse.cuhk.edu.hk/~leojia/projects/rollguidance/.

References

  1. Arnheim, R.: Art and Visual Perception: A Psychology of the Creative Eye. University of California Press, Berkeley (1954)

    Google Scholar 

  2. Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006)

    Article  MATH  Google Scholar 

  3. Baek, J., Jacobs, D.E.: Accelerating spatially varying gaussian filters. ACM Trans. Graph. (TOG) 29, 169 (2010). ACM

    Article  Google Scholar 

  4. Bi, S., Han, X., Yu, Y.: An l1 image transform for edge-preserving smoothing and scene-level intrinsic decomposition. ACM Trans. Graph. (TOG) 34(4), 78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bresson, X., Esedoḡlu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  6. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  7. Chen, L., Zhang, H., Ren, D., Zhang, D., Zuo, W.: Fast augmented Lagrangian method for image smoothing with hyper-laplacian gradient prior. In: Li, S., Liu, C., Wang, Y. (eds.) CCPR 2014. CCIS, vol. 484, pp. 12–21. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45643-9_2

    Google Scholar 

  8. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. (TOG) 21, 257–266 (2002). ACM

    Google Scholar 

  9. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. (TOG) 27, 67 (2008). ACM

    Article  Google Scholar 

  10. Fattal, R.: Edge-avoiding wavelets and their applications. ACM Trans. Graph. (TOG) 28(3), 22 (2009)

    Article  Google Scholar 

  11. Fattal, R., Agrawala, M., Rusinkiewicz, S.: Multiscale shape and detail enhancement from multi-light image collections. ACM Trans. Graph. 26(3), 51 (2007)

    Article  Google Scholar 

  12. He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15549-9_1

    Chapter  Google Scholar 

  13. Kass, M., Solomon, J.: Smoothed local histogram filters. ACM Trans. Graph. (TOG) 29, 100 (2010). ACM

    Article  Google Scholar 

  14. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. Int. J. Comput. Vis. 43(1), 7–27 (2001)

    Article  MATH  Google Scholar 

  15. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  16. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. van de Weijer, J., Van den Boomgaard, R.: Local mode filtering. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, p. 428. IEEE (2001)

    Google Scholar 

  18. Weiss, B.: Fast median and bilateral filtering. In: ACM Trans. Graph. (TOG) 25, 519–526 (2006). ACM

    Google Scholar 

  19. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via l0 gradient minimization. ACM Trans. Graph. (TOG) 30, 174 (2011). ACM

    Google Scholar 

  20. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. (TOG) 31(6), 139 (2012)

    Google Scholar 

  21. Yang, Q.: Recursive bilateral filtering. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 399–413. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33718-5_29

    Chapter  Google Scholar 

  22. Zhang, Q., Shen, X., Xu, L., Jia, J.: Rolling guidance filter. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 815–830. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10578-9_53

    Google Scholar 

  23. Zhang, Q., Xu, L., Jia, J.: 100+ times faster weighted median filter (WMF). In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2830–2837 (2014)

    Google Scholar 

Download references

Acknowledgement

This work is partly support by the National Science Foundation of China (NSFC) project under the contract No. 61271093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangmeng Zuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Zheng, S., Song, C., Zhang, H., Yan, Z., Zuo, W. (2016). Learning-Based Weighted Total Variation for Structure Preserving Texture Removal. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 663. Springer, Singapore. https://doi.org/10.1007/978-981-10-3005-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3005-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3004-8

  • Online ISBN: 978-981-10-3005-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics