[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Enhancing Parallel Self-organizing Map on Heterogeneous System Architecture

  • Conference paper
  • First Online:
Soft Computing in Data Science (SCDS 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 788))

Included in the following conference series:

  • 835 Accesses

Abstract

Self-organizing Map (SOM) is a very popular algorithm that has been used as clustering algorithm and data exploration. SOM consists of complex calculations where the calculation of complexity depending on the circumstances. Many researchers have managed to improve online SOM processing speed using discrete Graphic Processing Units (GPU). In spite of excellent performance using GPU, there is a situation that causes computer hardware underutilized when executing online SOM variant on GPU architecture. In details, the situation occurs when number of cores is larger than the number of neurons on map. Moreover, the complexities of SOM steps also increase the usage of high memory capacity which leads to high rate memory transfer. Recently, Heterogeneous System Architecture (HSA), that integrated Central Processing Unit (CPU) and GPU together on a single chip are rapidly attractive the design paradigm for recent platform because of their remarkable parallel processing abilities. Therefore, the main goal of this study is to reduce computation time of SOM training through adapting HSA platform and combining two SOM training processes. This study attempts to enhance the processing of SOM algorithm using multiple stimuli approach. The data used in this study are benchmark datasets from UCI Machine Learning repository. As a result, the enhanced parallel SOM algorithm that executed on HSA platform is able to score a promising speed up for different parameter size compared to standard parallel SOM on HSA platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kohonen, T.: Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013)

    Article  Google Scholar 

  2. Llanos, J., Morales, R., Núñez, A., Sáez, D., Lacalle, M., Marín, L.G., Hernández, R., Lanas, F.: Load estimation for microgrid planning based on a self-organizing map methodology. Appl. Soft Comput. 53, 323–335 (2017)

    Article  Google Scholar 

  3. Matic, F., Kovac, Z., Vilibic, I., Mihanovic, H., Morovic, M., Grbec, B., Leder, N., Dzoic, T.: Oscillating adriatic temperature and salinity regimes mapped using the self-organizing maps method. Cont. Shelf Res. 132, 11–18 (2017)

    Article  Google Scholar 

  4. McConnell, S., Sturgeon, R., Henry, G., Mayne, A., Hurley, R.: Scalability of self-organizing maps on a GPU cluster using OpenCL and CUDA. J. Phys: Conf. Ser. 341, 12018 (2012)

    Google Scholar 

  5. Hasan, S., Shamsuddin, S.M., Lopes, N.: Machine learning big data framework and analytics for big data problems. Int. J. Adv. Soft Comput. Appl. 6, 1–17 (2014)

    Google Scholar 

  6. Kurdthongmee, W.: A novel Kohonen SOM-based image compression architecture suitable for moderate density {FPGAs}. Image Vis. Comput. 26, 1094–1105 (2008)

    Article  Google Scholar 

  7. Kurdthongmee, W.: A low latency minimum distance searching unit of the SOM based hardware quantizer. Microprocess. Microsyst. 39, 135–143 (2015)

    Article  Google Scholar 

  8. Moraes, F.C., Botelho, S.C., Filho, N.D., Gaya, J.F.O.: Parallel high dimensional self organizing maps using CUDA. In: 2012 Brazilian Robotics Symposium and Latin American Robotics Symposium, pp. 302–306 (2012)

    Google Scholar 

  9. Sul, S.J., Tovchigrechko, A.: Parallelizing BLAST and SOM Algorithms with MapReduce-MPI library. In: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum, pp. 481–489 (2011)

    Google Scholar 

  10. Mojarab, M., Memarian, H., Zare, M., Hossein Morshedy, A., Hossein Pishahang, M.: Modeling of the seismotectonic provinces of Iran using the self-organizing map algorithm. Comput. Geosci. 67, 150–162 (2014)

    Article  Google Scholar 

  11. Richardson, T., Winer, E.: Extending parallelization of the self-organizing map by combining data and network partitioned methods. Adv. Eng. Softw. 88, 1–7 (2015)

    Article  Google Scholar 

  12. Garcia, C., Prieto, M., Pascual-Montano, A.: A speculative parallel algorithm for self-organizing maps. In: Proceedings of Parallel Computing 2005 (ParCo 2005), vol. 33, pp. 615–622 (2005)

    Google Scholar 

  13. MacLean, D., Valova, I.: Parallel growing SOM monitored by genetic algorithm. In: 2007 International Joint Conference on Neural Networks, pp. 1697–1702 (2007)

    Google Scholar 

  14. Dlugosz, R., Kolasa, M., Pedrycz, W., Szulc, M.: Parallel programmable asynchronous neighborhood mechanism for kohonen SOM implemented in CMOS technology. IEEE Trans. Neural Netw. 22, 2091–2104 (2011)

    Article  Google Scholar 

  15. Khalifa, K.B., Girau, B., Alexandre, F., Bedoui, M.H.: Parallel FPGA implementation of self-organizing maps. In: Proceedings of the 16th International Conference on Microelectronics, ICM 2004, pp. 709–712 (2004)

    Google Scholar 

  16. Yang, M.-H., Ahuja, N.: A data partition method for parallel self-organizing map. In: International Joint Conference on Neural Networks, IJCNN 1999, vol. 3, pp. 1929–1933 (1999)

    Google Scholar 

  17. Schabauer, H., Schikuta, E., Weishäupl, T.: Solving very large traveling salesman problems by SOM parallelization on cluster architectures. In: Proceedings of Parallel and Distributed Computing, Applications and Technologies, PDCAT, pp. 954–958 (2005)

    Google Scholar 

  18. Gajdos, P., Platos, J.: GPU based parallelism for self-organizing map. In: Kudělka, M., Pokorný, J., Snášel, V., Abraham, A. (eds.) Intelligent Human Computer Interaction. Advances in Intelligent Systems and Computing, vol. 179, pp. 3–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31603-6_20

    Google Scholar 

  19. Nguyen, V.T., Hagenbuchner, M., Tsoi, A.C.: High resolution self-organizing maps. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS, vol. 9992, pp. 441–454. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50127-7_38

    Chapter  Google Scholar 

  20. Lachmair, J., Merényi, E., Porrmann, M., Rückert, U.: A reconfigurable neuroprocessor for self-organizing feature maps. Neurocomputing 112, 189–199 (2013)

    Article  Google Scholar 

  21. Asanović, K.: A fast Kohonen net implementation for spert-II. In: Mira, J., Moreno-Díaz, R., Cabestany, J. (eds.) IWANN 1997. LNCS, vol. 1240, pp. 792–800. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0032538

    Chapter  Google Scholar 

  22. Porrmann, M., Witkowski, U., Ruckert, U.: A massively parallel architecture for self-organizing feature maps. IEEE Trans. Neural Netw. 14, 1110–1121 (2003)

    Article  Google Scholar 

  23. Perelygin, K., Lam, S., Wu, X.: Graphics processing units and open computing language for parallel computing. Comput. Electr. Eng. 40, 241–251 (2014)

    Article  Google Scholar 

  24. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors. Elsevier, Amsterdam (2013)

    Google Scholar 

  25. Rauber, T., Rünger, G.: Parallel Programming: For Multicore and Cluster Systems. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-04818-0

    Book  MATH  Google Scholar 

  26. Mittal, S., Vetter, J.S.: A survey of CPU-GPU heterogeneous computing techniques. ACM Comput. Surv. 47, 69:1–69:35 (2015)

    Article  Google Scholar 

  27. De, A., Zhang, Y., Guo, C.: A parallel image segmentation method based on SOM and GPU with application to MRI image processing. Neurocomputing 198, 180–189 (2016)

    Article  Google Scholar 

  28. Mukherjee, S., Sun, Y., Blinzer, P., Ziabari, A.K., Kaeli, D.: A comprehensive performance analysis of HSA and OpenCL 2.0. In: 2016 IEEE International Symposium on Performance Analysis of Systems and Software (2016)

    Google Scholar 

  29. Khronos OpenCL: OpenCL Specification (2014)

    Google Scholar 

  30. Lichman, M.: UCI Machine Learning Repository. http://archive.ics.uci.edu/ml

  31. Mustapha, M.F., Abd Khalid, N.E., Ismail, A.: Evaluation of parallel self-organizing map using heterogeneous system platform. J. Appl. Sci. 17, 204–211 (2017)

    Article  Google Scholar 

  32. Yasunaga, M., Tominaga, K., Kim, J.H.: Parallel self-organization map using multiple stimuli. In: International Joint Conference on Neural Networks, IJCNN 1999 (Cat. No. 99CH36339), vol. 2, pp. 1127–1130 (1999)

    Google Scholar 

  33. Fränti, P., et al.: Clustering datasets. http://cs.uef.fi/sipu/datasets/

  34. Moro, S., Cortez, P., Rita, P.: A data-driven approach to predict the success of bank telemarketing. Decis. Support Syst. 62, 22–31 (2014)

    Article  Google Scholar 

  35. Berkhin, P.: A survey of clustering data mining techniques. Group. Multidimens. Data 25, 71 (2006)

    Google Scholar 

  36. Han, J., Kamber, M., Pei, J.: Data preprocessing. In: Data Mining Concept and Techniques, pp. 83–134 (2012)

    Google Scholar 

  37. Nawi, N.M., Atomi, W.H., Rehman, M.Z.: The effect of data pre-processing on optimized training of artificial neural networks. Procedia Technol. 11, 32–39 (2013)

    Article  Google Scholar 

  38. Hennessy, J.L., Patterson, D.A.: Computer Architecture, Fourth Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco (2006)

    MATH  Google Scholar 

Download references

Acknowledgement

This study was funded by Ministry of Higher Education (MOHE) of Malaysia, under the FRGS, grant no. FRGS/1/2015/ICT02/UITM/02/6 and Academic Staff Bumiputera Training Scheme (SLAB). The authors also would like to thank the Universiti Teknologi MARA for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Firdaus Mustapha or Noor Elaiza Abd Khalid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mustapha, M.F., Abd Khalid, N.E., Ismail, A., Manaf, M. (2017). Enhancing Parallel Self-organizing Map on Heterogeneous System Architecture. In: Mohamed, A., Berry, M., Yap, B. (eds) Soft Computing in Data Science. SCDS 2017. Communications in Computer and Information Science, vol 788. Springer, Singapore. https://doi.org/10.1007/978-981-10-7242-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7242-0_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7241-3

  • Online ISBN: 978-981-10-7242-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics