[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Information-Aware Privacy-Preserving Accelerometer Data Sharing

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 727))

Abstract

In the age of big data, plenty of valuable data have been shared to enhance scientific innovation, which, however, may disclose unexpected privacy leakage. Although numerous privacy preservation techniques have been proposed to conceal sensitive information, it is usually at the cost of the application utility reduction. In this paper, we present a data sharing scheme, which balances the application utility and privacy leakage for specific data sharing. To illustrate our scheme, smartphones’ acceleration data have been adopted as an illustrative example. Experimental study has shown that sampling frequency play dominant roles in reducing privacy leakage with much less reduction on utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kapadia, A., Triandopoulos, N., Cornelius, C., Peebles, D., Kotz, D.: AnonySense: opportunistic and privacy-preserving context collection. In: Indulska, J., Patterson, D.J., Rodden, T., Ott, M. (eds.) Pervasive 2008. LNCS, vol. 5013, pp. 280–297. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79576-6_17

    Chapter  Google Scholar 

  2. Boutsis, I., Kalogeraki, V.: Privacy preservation for participatory sensing data. In: IEEE International Conference on Pervasive Computing and Communications, pp. 103–113 (2013)

    Google Scholar 

  3. Liu, B., Jiang, Y., Sha, F., et al.: Cloud-enabled privacy-preserving collaborative learning for mobile sensing. In: Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, pp. 57–70. ACM (2012)

    Google Scholar 

  4. Ganti, R.K., Pham, N., Tsai, Y.E., et al.: PoolView: stream privacy for grassroots participatory sensing. In: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, pp. 281–294. ACM (2008)

    Google Scholar 

  5. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24646-6_1

    Chapter  Google Scholar 

  6. Wang, H.: Privacy-preserving data sharing in cloud computing. J. Comput. Sci. Technol. 25(3), 401–414 (2010)

    Article  Google Scholar 

  7. Hull, R., Kumar, B., Lieuwen, D., et al.: Enabling context-aware and privacy-conscious user data sharing. In: Proceedings of the 2004 IEEE International Conference on Mobile Data Management, 2004, pp. 187–198. IEEE (2004)

    Google Scholar 

  8. Lane, N.D., Miluzzo, E., Lu, H., et al.: A survey of mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010)

    Article  Google Scholar 

  9. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM Sigkdd Explor. Newsl. 12(2), 74–82 (2010)

    Article  Google Scholar 

  10. Győrbíró, N., Fábián, Á., Hományi, G.: An activity recognition system for mobile phones. Mob. Netw. Appl. 14(1), 82–91 (2009)

    Article  Google Scholar 

  11. Ailisto, H.J, Lindholm, M., Mantyjarvi, J., et al.: Identifying people from gait pattern with accelerometers. In: International Society for Optics and Photonics, Defense and Security, pp. 7–14 (2005)

    Google Scholar 

  12. Gafurov, D., Helkala, K., Søndrol, T.: Biometric gait authentication using accelerometer sensor. J. comput. 1(7), 51–59 (2006)

    Article  Google Scholar 

  13. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Cell phone-based biometric identification. In: 2010 Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), pp. 1–7. IEEE (2010)

    Google Scholar 

  14. Derawi, M., Bours, P.: Gait and activity recognition using commercial phones. Comput. secur. 39, 137–144 (2013)

    Article  Google Scholar 

  15. Christin, D., Reinhardt, A., Kanhere, S.S., et al.: A survey on privacy in mobile participatory sensing applications. J. Syst. and Softw. 84(11), 1928–1946 (2011)

    Article  Google Scholar 

  16. Cho, I.Y., Sunwoo, J., Son, Y.K., Oh, M.-H., Lee, C.-H.: Development of a single 3-axis accelerometer sensor based wearable gesture recognition band. In: Indulska, J., Ma, J., Yang, Laurence T., Ungerer, T., Cao, J. (eds.) UIC 2007. LNCS, vol. 4611, pp. 43–52. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73549-6_5

    Chapter  Google Scholar 

  17. Yang, C.C., Hsu, Y.L.: A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10(8), 7772–7788 (2010)

    Article  Google Scholar 

  18. Kawaguchi, N., Ogawa, N., Iwasaki, Y., et al.: HASC challenge: gathering large scale human activity corpus for the real-world activity understandings. In: Proceedings of the 2nd Augmented Human International Conference, p. 27. ACM (2011)

    Google Scholar 

  19. Lockhart, J.W., Weiss, G.M.: The benefits of personalized smartphone-based activity recognition models. In: SDM, pp. 614–622 (2014)

    Google Scholar 

  20. Shoaib, M., Bosch, S., Incel, O.D., et al.: A survey of online activity recognition using mobile phones. Sensors 15(1), 2059–2085 (2015)

    Article  Google Scholar 

  21. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 12(2), 74–82 (2011)

    Article  Google Scholar 

  22. Incel, O.D., Kose, M., Ersoy, C.: A review and taxonomy of activity recognition on mobile phones. BioNanoScience 3(2), 145–171 (2013)

    Article  Google Scholar 

  23. Guo, B., Nixon, M.S.: Gait feature subset selection by mutual information. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(1), 36–46 (2009)

    Article  Google Scholar 

  24. Avci, A., Bosch, S., Marin-Perianu, M., et al.: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: a survey. In: 2010 23rd International Conference on Architecture of Computing Systems (ARCS), pp. 1–10. VDE (2010)

    Google Scholar 

  25. Parameswaran, R., Blough, D.M.: Privacy preserving collaborative filtering using data obfuscation. In: IEEE International Conference on Granular Computing, 2007. GRC 2007, p. 380. IEEE (2007)

    Google Scholar 

  26. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: ACM Sigmod Record. vol. 29(2), pp. 439–450. ACM (2000)

    Google Scholar 

  27. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(05), 557–570 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Aritra, D., Min, C., Robert, K.: Measuring privacy and utility in privacy-preserving visualization. Comput. Graph. Forum 32(32), 35–47 (2013)

    Google Scholar 

  29. Tarameshloo, E., et al.: Using visualization to explore original and anonymized LBSN data. In: Eurographics/IEEE VGTC Conference on Visualization Eurographics Association, pp. 291–300 (2016)

    Google Scholar 

  30. Wang, Y., Gou, L., Xu, A., et al.: VeilMe: an interactive visualization tool for privacy configuration of using personality traits. In: ACM Conference on Human Factors in Computing Systems. pp. 817–826. ACM (2015)

    Google Scholar 

  31. Kawaguchi, N., Ogawa, N., Iwasaki, Y., et al.: HASC Challenge: gathering large scale human activity corpus for the real-world activity understandings. In: Proceedings of the 2nd Augmented Human International Conference, p. 27. ACM (2011)

    Google Scholar 

  32. Lockhart, J.W., Weiss, G.M.: The benefits of personalized smartphone-based activity recognition models. In: SDM, pp. 614–622 (2014)

    Google Scholar 

  33. Gjoreski, H., Kozina, S., Gams, M., et al.: Competitive live evaluations of activity-recognition systems. IEEE Pervasive Comput. 14(1), 70–77 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by Project Nos. 61232001, 61173169, and 60903222 supported by National Science Foundation of China, No. 2016JJ2149 supported by Science Foundation of Hunan, and also supported by the Major Science & Technology Research Program for Strategic Emerging Industry of Hunan (Grant No. 2012GK4054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Lu, M., Guo, Y., Meng, D., Li, C., Zhao, Y. (2017). An Information-Aware Privacy-Preserving Accelerometer Data Sharing. In: Zou, B., Li, M., Wang, H., Song, X., Xie, W., Lu, Z. (eds) Data Science. ICPCSEE 2017. Communications in Computer and Information Science, vol 727. Springer, Singapore. https://doi.org/10.1007/978-981-10-6385-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6385-5_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6384-8

  • Online ISBN: 978-981-10-6385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics