Abstract
To achieve faster computational speeds than classical computing, quantum computing is rapidly evolving to become one of the most popular areas of computer engineering. The advent of Noisy Intermediate Scale Quantum (NISQ) devices has made it possible to perform this work on quantum computers in areas like chemistry or machine learning. In the field of machine learning, one of the sub-areas of interest is quantum natural language processing. One of the lines of research already allows not only the encoding of words into qubits, also the association of these words -segmented according to their syntactic categorization-, to quantum combinational circuits or ansatz to allow, for example, the association of this circuit to a neural network.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Coecke, B.: The mathematics of text structure (2019). arXiv:1904.03478. https://doi.org/10.48550/ARXIV.1904.03478
Coecke, B., de Felice, G., Meichanetzidis, K., Toumi, A.: Foundations for near-term quantum natural language processing. arXiv: 2012.03755 (2020). https://doi.org/10.48550/ARXIV.2012.03755
Chen, Y., Pan, Y., Zhang, G., Cheng, S.: Detecting quantum entanglement with unsupervised learning (2021). https://arxiv.org/abs/2103.04804
Chen, B.-Q., Niu, X.-F.: Quantum neural network with improved quantum learning algorithm. Int. J. Theor. Phys. 59(7), 1978–1991 (2020). https://doi.org/10.1007/s10773-020-04470-9
García-Holgado, A., Marcos-Pablos, S., García-Peñalvo, F.J.: Guidelines for performing systematic research projects reviews. Int. J. Interact. Multimedia Artif. Intell. 6(2), 136–144 (2020)
García-Peñalvo, F.J.: Developing robust state-of-the-art reports: systematic literature reviews. Educ. Knowl. Soc. 23 (2022). Article e28600. https://doi.org/10.14201/eks.28600
Geerts, G.: A design science research methodology and its application to accounting information systems research. Int. J. Acc. Inf. Syst., 142–151 (2011)
de Felice, G., Toumi, A., Coecke, B.: DisCoPy: monoidal categories in python. Electron. Proc. Theor. Comput. Sci. 333, 183–197 (2021)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)
Kartsaklis, D., et al.: lambeq: an efficient high-level python library for quantum NLP (2021). https://doi.org/10.48550/arxiv.2110.04236
Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering. Technical report, (EBSE-2007-01) (2007). https://goo.gl/L1VHcw
Li, J., Lin, S., Yu, K.Y., Gongde Guo, G.: Quantum k-nearest neighbor classification algorithm based on hamming distance (2021)
Lorenz, R., Pearson, A., Meichanetzidis, K., Kartsaklis, D., Coecke, B.: QNLP in practice: Running compositional models of meaning on a quantum computer (2021)
Meichanetzidis, K., Toumi, A., de Felice, G., Coecke, B.: Grammar-aware question-answering on quantum computers (2020)
Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Group, T.P.: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med. 6(7) (2009). Article e100097
Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst., 45–77 (2007)
Peral-García, D., Cruz-Benito, J., García-Peñalvo, F.J.: Systematic literature review: quantum machine learning and its applications (2022). https://doi.org/10.48550/arxiv.2201.04093
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev., 303–332 (1999)
Tacchino, F., Barkoutsos, P., Macchiavello, C., Tavernelli, I., Gerace, D., Bajoni, D.: Quantum implementation of an artificial feed-forward neural network. Quantum Sci. Technol. 5(4) (2019). arXiv:1912.12486. https://doi.org/10.1088/2058-9565/abb8e4
Havlíček, V., et al.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Peral-García, D., Cruz-Benito, J., García-Peñalvo, F.J. (2023). Development of Algorithms and Methods for the Simulation and Improvement in the Quantum Natural Language Processing Area. In: García-Peñalvo, F.J., García-Holgado, A. (eds) Proceedings TEEM 2022: Tenth International Conference on Technological Ecosystems for Enhancing Multiculturality. TEEM 2022. Lecture Notes in Educational Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0942-1_130
Download citation
DOI: https://doi.org/10.1007/978-981-99-0942-1_130
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-0941-4
Online ISBN: 978-981-99-0942-1
eBook Packages: EducationEducation (R0)