[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Development of Algorithms and Methods for the Simulation and Improvement in the Quantum Natural Language Processing Area

  • Conference paper
  • First Online:
Proceedings TEEM 2022: Tenth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM 2022)

Abstract

To achieve faster computational speeds than classical computing, quantum computing is rapidly evolving to become one of the most popular areas of computer engineering. The advent of Noisy Intermediate Scale Quantum (NISQ) devices has made it possible to perform this work on quantum computers in areas like chemistry or machine learning. In the field of machine learning, one of the sub-areas of interest is quantum natural language processing. One of the lines of research already allows not only the encoding of words into qubits, also the association of these words -segmented according to their syntactic categorization-, to quantum combinational circuits or ansatz to allow, for example, the association of this circuit to a neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 109.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coecke, B.: The mathematics of text structure (2019). arXiv:1904.03478. https://doi.org/10.48550/ARXIV.1904.03478

  2. Coecke, B., de Felice, G., Meichanetzidis, K., Toumi, A.: Foundations for near-term quantum natural language processing. arXiv: 2012.03755 (2020). https://doi.org/10.48550/ARXIV.2012.03755

  3. Chen, Y., Pan, Y., Zhang, G., Cheng, S.: Detecting quantum entanglement with unsupervised learning (2021). https://arxiv.org/abs/2103.04804

  4. Chen, B.-Q., Niu, X.-F.: Quantum neural network with improved quantum learning algorithm. Int. J. Theor. Phys. 59(7), 1978–1991 (2020). https://doi.org/10.1007/s10773-020-04470-9

    Article  Google Scholar 

  5. García-Holgado, A., Marcos-Pablos, S., García-Peñalvo, F.J.: Guidelines for performing systematic research projects reviews. Int. J. Interact. Multimedia Artif. Intell. 6(2), 136–144 (2020)

    Google Scholar 

  6. García-Peñalvo, F.J.: Developing robust state-of-the-art reports: systematic literature reviews. Educ. Knowl. Soc. 23 (2022). Article e28600. https://doi.org/10.14201/eks.28600

  7. Geerts, G.: A design science research methodology and its application to accounting information systems research. Int. J. Acc. Inf. Syst., 142–151 (2011)

    Google Scholar 

  8. de Felice, G., Toumi, A., Coecke, B.: DisCoPy: monoidal categories in python. Electron. Proc. Theor. Comput. Sci. 333, 183–197 (2021)

    Article  Google Scholar 

  9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  10. Kartsaklis, D., et al.: lambeq: an efficient high-level python library for quantum NLP (2021). https://doi.org/10.48550/arxiv.2110.04236

  11. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering. Technical report, (EBSE-2007-01) (2007). https://goo.gl/L1VHcw

  12. Li, J., Lin, S., Yu, K.Y., Gongde Guo, G.: Quantum k-nearest neighbor classification algorithm based on hamming distance (2021)

    Google Scholar 

  13. Lorenz, R., Pearson, A., Meichanetzidis, K., Kartsaklis, D., Coecke, B.: QNLP in practice: Running compositional models of meaning on a quantum computer (2021)

    Google Scholar 

  14. Meichanetzidis, K., Toumi, A., de Felice, G., Coecke, B.: Grammar-aware question-answering on quantum computers (2020)

    Google Scholar 

  15. Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Group, T.P.: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med. 6(7) (2009). Article e100097

    Google Scholar 

  16. Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst., 45–77 (2007)

    Google Scholar 

  17. Peral-García, D., Cruz-Benito, J., García-Peñalvo, F.J.: Systematic literature review: quantum machine learning and its applications (2022). https://doi.org/10.48550/arxiv.2201.04093

  18. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev., 303–332 (1999)

    Google Scholar 

  19. Tacchino, F., Barkoutsos, P., Macchiavello, C., Tavernelli, I., Gerace, D., Bajoni, D.: Quantum implementation of an artificial feed-forward neural network. Quantum Sci. Technol. 5(4) (2019). arXiv:1912.12486. https://doi.org/10.1088/2058-9565/abb8e4

  20. Havlíček, V., et al.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Peral-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peral-García, D., Cruz-Benito, J., García-Peñalvo, F.J. (2023). Development of Algorithms and Methods for the Simulation and Improvement in the Quantum Natural Language Processing Area. In: García-Peñalvo, F.J., García-Holgado, A. (eds) Proceedings TEEM 2022: Tenth International Conference on Technological Ecosystems for Enhancing Multiculturality. TEEM 2022. Lecture Notes in Educational Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0942-1_130

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0942-1_130

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0941-4

  • Online ISBN: 978-981-99-0942-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics