Abstract
Public-key quantum money is a cryptographic proposal for using highly entangled quantum states as currency that is publicly verifiable yet resistant to counterfeiting due to the laws of physics. Despite significant interest, constructing provably-secure public-key quantum money schemes based on standard cryptographic assumptions has remained an elusive goal. Even proposing plausibly-secure candidate schemes has been a challenge.
These difficulties call for a deeper and systematic study of the structure of public-key quantum money schemes and the assumptions they can be based on. Motivated by this, we present the first black-box separation of quantum money and cryptographic primitives. Specifically, we show that collision-resistant hash functions cannot be used as a black-box to construct public-key quantum money schemes where the banknote verification makes classical queries to the hash function. Our result involves a novel combination of state synthesis techniques from quantum complexity theory and simulation techniques, including Zhandry’s compressed oracle technique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A recent work by [MLZ22] presents a nice framework capturing many of the candidate constructions of public-key quantum money.
- 2.
Technically, we show a weaker statement which holds for almost every \((\textsf{pk},s)\).
- 3.
Technically, we require that the reduced density matrix of \(\rho _{\textsf{pk},s}\) is accepted by \(\textsf{Ver}\).
- 4.
The fact that we don’t have the description of \({\mathcal {R}}\) is the problem here.
- 5.
Actually we use the residual state after running verification polynomially many times on the valid banknote.
References
Aaronson, S., Ambainis, A.: The need for structure in quantum speedups. arXiv preprint arXiv:0911.0996 (2009)
Aaronson, S.: Quantum copy-protection and quantum money. In: 24th Annual IEEE Conference on Computational Complexity, pp. 229-242. IEEE Computer Society, Los Alamitos, CA (2009). https://doi.org/10.1109/CCC.2009.42
Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. Theory Comput. 9, 349–401 (2013). https://doi.org/10.4086/toc.2013.v009a009
Austrin, P., Chung, H., Chung, K.-M., Fu, S., Lin, Y.-T., Mahmoody, M.: On the impossibility of key agreements from quantum random oracles. Cryptology ePrint Archive (2022)
Ananth, P., Hu, Z., Yuen, H.: On the (im)plausibility of public-key quantum money from collision-resistant hash functions. Cryptology ePrint Archive, Paper 2023/069. https://eprint.iacr.org/2023/0692023. URL: https://eprint.iacr.org/2023/069 (cit. on pp. 17, 27-29)
Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation without multilinear maps: new paradigms via low degree weak pseudorandomness and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_10
Ananth,. P., Kaleoglu, F.: A note on copy-protection from random oracles. Cryptology ePrint Archive, Paper 2022/1109. https://eprint.iacr.org/2022/1109 (2022). https://eprint.iacr.org/2022/1109
Ananth, P., Kaleoglu, F., Li, X., Liu, Q., Zhandry, M.: On the feasibility of unclonable encryption, and more. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 212–241. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_8
Ananth, P., La Placa, R.L.: Secure software leasing. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 501–530. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_17
Bilyk, A., Doliskani, J., Gong, Z.: Cryptanalysis of three quantum money schemes. arXiv preprint arXiv:2205.10488 (2022)
Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings are not necessary for iO: circularsecure LWE suffices. Cryptology ePrint Archive (2020)
Bitansky, N., Degwekar, A., Vaikuntanathan, V.: Structure vs. hardness through the obfuscation lens. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 696–723. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_23
Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1
Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 344–360. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_20
Broadbent, A., Islam, R.: Quantum encryption with certified deletion. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 92–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_4
Broadbent, A., Lord, S.: Uncloneable quantum encryption via oracles. In: Flammia, S.T. (ed.) 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020), vol. 158. Leibniz International Proceedings in Informatics (LIPIcs), pp. 4:1-4:22. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.TQC.2020.4
Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal — an O(n2)-query attack on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_22
Boneh, D., Papakonstantinou, P., Rackoff, C., Vahlis, Y., Waters, B.: On the impossibility of basing identity based encryption on trapdoor permutations. In: 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 283–292. IEEE (2008)
Ben-David, S., Sattath, O.: Quantum tokens for digital signatures. arXiv preprint arXiv:1609.09047 (2016)
Canetti, R., Kalai, Y.T., Paneth, O.: On obfuscation with random oracles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 456–467. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_18
Coladangelo, A., Liu, J., Liu, Q., Zhandry, M.: Hidden cosets and applications to unclonable cryptography. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 556–584. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_20
Coladangelo, A., Majenz, C., Poremba, A.: Quantum copy-protection of compute-and-compare programs in the quantum random oracle model. arXiv preprint arXiv:2009.13865 (2020)
Cao, S., Xue, R.: Being a permutation is also orthogonal to one-wayness in quantum world: impossibilities of quantum one-way permutations from one-wayness primitives. In: Theoretical Computer Science, vol. 855, pp. 16–42 (2021)
Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_18
Dieks, D.G.B.J.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982)
Dachman-Soled, D., Lindell, Y., Mahmoody, M., Malkin, T.: On the black-box complexity of optimally-fair coin tossing. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 450–467. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_27
Devadas, L., Quach, W., Vaikuntanathan, V., Wee, H., Wichs, D.: Succinct LWE sampling, random polynomials, and obfuscation. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 256–287. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_9
Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.: Quantum money from knots. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 276–289 (2012)
Goyal, V., Kumar, V., Lokam, S., Mahmoody, M.: On black-box reductions between predicate encryption schemes. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 440–457. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_25
Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relationship between public key encryption and oblivious transfer. In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp. 325–335. IEEE (2000)
Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp. 736–749 (2021)
Georgiou, M., Zhandry, M.: Unclonable decryption keys. Cryptology ePrint Archive (2020)
Hopkins, S., Jain, A., Lin, H.: Counterexamples to new circular security assumptions underlying iO. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 673–700. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_23
Hosoyamada, A., Yamakawa, T.: Finding collisions in a quantum world: quantum black-box separation of collision-resistance and one-wayness. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 3–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_1
Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference, pp. 134–147. IEEE (1995)
Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_2
Ji, Z., Liu, Y.-K., Song, F.: Pseudorandom quantum states. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 126–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_5
Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp. 60–73 (2021)
Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from LPN over, DLIN, and PRGs in NC. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13275, pp. 670–699. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06944-4_23
Kane, D.M., Sharif, S., Silverberg, A.: Quantum money from quaternion algebras. arXiv preprint arXiv:2109.12643 (2021)
Lutomirski, A.: An online attack against Wiesner’s quantum money. arXiv preprint arXiv:1010.0256 (2010)
Montgomery, H., Liu, J., Zhandry, M.: Another round of breaking and making quantum money: how to not build it from lattices, and more. arXiv preprint arXiv:2211.11994 (2022)
Molina, A., Vidick, T., Watrous, J.: Optimal counterfeiting attacks and generalizations for Wiesner’s quantum money. In: Iwama, K., Kawano, Y., Murao, M. (eds.) TQC 2012. LNCS, vol. 7582, pp. 45–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35656-8_4
Marriott, C., Watrous, J.: Quantum Arthur-Merlin games. Comput. Complex. 14(2), 122–152 (2005)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)
Papadimitriou, C.H.: Computational Complexity. Addison- Wesley, Boston (1994)
Papakonstantinou, P.A., Rackoff, C.W., Vahlis, Y.: How powerful are the DDH hard groups? Cryptology ePrint Archive (2012)
Roberts, B.: Security analysis of quantum lightning. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 562–567. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_19
Radian, R., Sattath, O.: Semi-quantum money. J. Cryptol. 35(2), 1–70 (2022)
Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_1
Rudich, S.: The use of interaction in public cryptosystems. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 242–251. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_19
Rosenthal, G., Yuen, H.: Interactive proofs for synthesizing quantum states and unitaries. arXiv preprint arXiv:2108.07192 (2021)
Shmueli, O.: Public-key Quantum money with a classical bank. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp. 790–803 (2022)
Shmueli, O.: Semi-quantum tokenized signatures. Cryptology ePrint Archive (2022)
Simon, D.R.: Finding collisions on a one-way street: can secure hash functions be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054137
Unruh, D.: Computationally binding quantum commitments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 497–527. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_18
Wiesner, S.: Conjugate coding. In: ACM SIGACT News 15(1), 78–88 (1983)
Winter, A.: Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Theory 45(7), 2481–2485 (1999)
Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 127–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_5
Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)
Zhandry, M.: A note on the quantum collision and set equality problems. Quantum Inf. Comput. 15(7–8), 557–567 (2015)
Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. Cryptology ePrint Archive, Paper 2018/276. https://eprint.iacr.org/2018/276 (2018)
Zhandry, M.: Quantum lightning never strikes the same state twice. Or: quantum money from cryptographic assumptions. J. Cryptol. 34(1), Paper No. 6, 56 (2021). issn 0933-2790. https://doi.org/10.1007/s00145-020-09372-x
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Ananth, P., Hu, Z., Yuen, H. (2023). On the (Im)plausibility of Public-Key Quantum Money from Collision-Resistant Hash Functions. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14445. Springer, Singapore. https://doi.org/10.1007/978-981-99-8742-9_2
Download citation
DOI: https://doi.org/10.1007/978-981-99-8742-9_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8741-2
Online ISBN: 978-981-99-8742-9
eBook Packages: Computer ScienceComputer Science (R0)