[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Black-Box Knowledge-Sound Commit-And-Prove SNARKs

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2023 (ASIACRYPT 2023)

Abstract

Gentry and Wichs proved that adaptively sound SNARGs for hard languages need non-falsifiable assumptions. Lipmaa and Pavlyk claimed Gentry-Wichs is tight by constructing a non-adaptively sound zk-SNARG FANA for \(\textsf{NP}\) from falsifiable assumptions. We show that FANA is flawed. We define and construct a fully algebraic F-position-binding vector commitment scheme \(\textrm{VCF}\). We construct a concretely efficient commit-and-prove zk-SNARK Punic, a version of FANA with an additional \(\textrm{VCF}\) commitment to the witness. Punic satisfies semi-adaptive black-box \(G\)-knowledge-soundness, a new natural knowledge-soundness notion for commit-and-prove SNARKs. We use a new proof technique to achieve global consistency using a functional somewhere-extractable commitment scheme to extract vector commitment’s local proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    [53] noted that FANA is insecure (and referred to a private conversation with the authors of [46]), but they did not explain why. We will provide full details.

  2. 2.

    The initial QA-NIZK constructions were for linear subspaces [36, 40]. They (and the bilateral linear subspace QA-SNARG, used in [16, 17] and the current paper) have a language parameter that is not a commitment key. We use the acronym QA-SNARG since it fits our framework better.

  3. 3.

    We use the standard additive bracket notation for pairings. For example, for \(s \in \mathbb {Z}_{p}\), \([s]_{1} = s [1]_{1} \in \mathbb {G}_{1}\). See Sect. 3.

  4. 4.

    Defined as functional somewhere statistically binding (SSB) commitment in [17]; generalizes SSB hashes [32, 48]. In SSB hashes, \(\mathcal {F}\) is the family of point functions, and q is always equal to one. On the other hand, we do not need the local opening property, thus obtaining better efficiency. Since extractability is essential, we call them functional \(\textrm{SE}\). \(\textrm{DGPRS}\) and \(\textrm{FLPS}\) predate [13]. \(\textrm{SE}\) commitments have been used to build SNARGs for \(\textsf{P}\) and batch-arguments for \(\textsf{NP}\) [13, 27].

  5. 5.

    \((\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})\) is a part of the instance and thus our SNARKs are non-universal. The most efficient known universal SNARKs [30] in the standard model (without random oracles) have quadratic size CRS and are thus too inefficient for practice.

References

  1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zając, M.: A subversion-resistant SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_1

    Chapter  Google Scholar 

  2. Abdolmaleki, B., Lipmaa, H., Siim, J., Zając, M.: On QA-NIZK in the BPK model. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 590–620. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_20

    Chapter  Google Scholar 

  3. Abdolmaleki, B., Lipmaa, H., Siim, J., Zajac, M.: On Subversion-Resistant SNARKs. J. Cryptology 34(3), 1–42 (2021). https://doi.org/10.1007/s00145-021-09379-y

    Article  MathSciNet  Google Scholar 

  4. Agrawal, S., Dodis, Y., Vaikuntanathan, V., Wichs, D.: On continual leakage of discrete log representations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 401–420. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_21

    Chapter  Google Scholar 

  5. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_20

    Chapter  Google Scholar 

  6. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an Untrusted CRS: Security in the Face of Parameter Subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_26

    Chapter  Google Scholar 

  7. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008). https://doi.org/10.1007/s00145-007-9005-7

    Article  MathSciNet  Google Scholar 

  8. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable and modular anonymous credentials: definitions and practical constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 262–288. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_11

    Chapter  Google Scholar 

  9. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: a toolbox for more efficient universal and updatable zkSNARKs and commit-and-prove extensions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS, vol. 13092, pp. 3–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_1

    Chapter  Google Scholar 

  10. Campanelli, M., Ganesh, C., Khoshakhlagh, H., Siim, J.: Impossibilities in succinct arguments: black-box extraction and more. In: Duquesne, S., Feo, L.D., Mrabet, N.E. (eds.) AFRICACRYPT 2023. LNCS, vol. 14064, pp. 465–489. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37679-5_20

    Chapter  Google Scholar 

  11. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5

    Chapter  Google Scholar 

  12. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26

    Chapter  Google Scholar 

  13. Choudhuri, A.R., Jain, A., Jin, Z.: SNARGs for \(\cal{P} \) from LWE. In: FOCS 2021, Denver, Colorado, USA, pp. 68–79. IEEE, IEEE Computer Society Press (2021)

    Google Scholar 

  14. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19

    Chapter  Google Scholar 

  15. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_28

    Chapter  Google Scholar 

  16. Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter quadratic QA-NIZK proofs. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp. 314–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_11

    Chapter  Google Scholar 

  17. Fauzi, P., Lipmaa, H., Pindado, Z., Siim, J.: Somewhere statistically binding commitment schemes with applications. In: Borisov, N., Diaz, C. (eds.) FC 2021, Part I. LNCS, vol. 12674, pp. 436–456. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-64322-8_21

    Chapter  Google Scholar 

  18. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single random string (extended abstract). In: 31st FOCS, pp. 308–317. IEEE Computer Society Press (1990). https://doi.org/10.1109/FSCS.1990.89549

  19. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_11

    Chapter  Google Scholar 

  20. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

    Chapter  Google Scholar 

  21. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

  22. Ganesh, C., Khoshakhlagh, H., Parisella, R.: NIWI and new notions of extraction for algebraic languages. In: Galdi, C., Jarecki, S. (eds.) SCN 2022. LNCS, vol. 13409, pp. 687–710. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14791-3_30

    Chapter  Google Scholar 

  23. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37

    Chapter  Google Scholar 

  24. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 99–108. ACM Press (2011). https://doi.org/10.1145/1993636.1993651

  25. González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups: new tools and new constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 605–629. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_25

    Chapter  Google Scholar 

  26. González, A., Ràfols, C.: Shorter pairing-based arguments under standard assumptions. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 728–757. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_25

    Chapter  Google Scholar 

  27. González, A., Zacharakis, A.: Fully-succinct publicly verifiable delegation from constant-size assumptions. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part I. LNCS, vol. 13042, pp. 529–557. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3_18

    Chapter  Google Scholar 

  28. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19

    Chapter  Google Scholar 

  29. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

    Chapter  Google Scholar 

  30. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference strings with applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_24

    Chapter  Google Scholar 

  31. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

    Chapter  Google Scholar 

  32. Hubacek, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. In: Roughgarden, T. (ed.) ITCS 2015, pp. 163–172. ACM (2015). https://doi.org/10.1145/2688073.2688105

  33. Izabachène, M., Libert, B., Vergnaud, D.: Block-wise P-signatures and non-interactive anonymous credentials with efficient attributes. In: Chen, L. (ed.) 13th IMA International Conference on Cryptography and Coding. LNCS, vol. 7089, pp. 431–450. Springer, Heidelberg (Dec (2011). https://doi.org/10.1007/978-3-642-25516-8_26

    Chapter  Google Scholar 

  34. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: Khuller, S., Williams, V.V. (eds.) 53rd ACM STOC, pp. 60–73. ACM Press (2021). https://doi.org/10.1145/3406325.3451093

  35. Jain, A., Jin, Z.: Indistinguishability obfuscation via mathematical proofs of equivalence. In: 63rd FOCS, pp. 1023–1034. IEEE Computer Society Press (2022). https://doi.org/10.1109/FOCS54457.2022.00100

  36. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_1

    Chapter  Google Scholar 

  37. Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In: Charikar, M., Cohen, E. (eds.) 51st ACM STOC, pp. 1115–1124. ACM Press (2019). https://doi.org/10.1145/3313276.3316411

  38. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power of no-signaling proofs. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 485–494. ACM Press (2014). https://doi.org/10.1145/2591796.2591809

  39. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11

    Chapter  Google Scholar 

  40. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_4

    Chapter  Google Scholar 

  41. Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_30

    Chapter  Google Scholar 

  42. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 171–189. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_10

    Chapter  Google Scholar 

  43. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10

    Chapter  Google Scholar 

  44. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_3

    Chapter  Google Scholar 

  45. Lipmaa, H.: On Black-Box Knowledge-Sound Commit-And-Prove SNARKs. Technical report 2023/?, IACR (2023). https://eprint.iacr.org/2023/?

  46. Lipmaa, H., Pavlyk, K.: Gentry-Wichs is tight: a falsifiable non-adaptively sound SNARG. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 34–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_2

    Chapter  Google Scholar 

  47. Lipmaa, H., Siim, J., Zajac, M.: Counting vampires: from univariate sumcheck to updatable ZK-SNARK. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp. 249–278. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22966-4_9

    Chapter  Google Scholar 

  48. Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere statistically binding hashing and positional accumulators. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 121–145. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_6

    Chapter  Google Scholar 

  49. Paneth, O., Rothblum, G.N.: On zero-testable homomorphic encryption and publicly verifiable non-interactive arguments. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 283–315. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_9

    Chapter  Google Scholar 

  50. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252. IEEE Computer Society Press (2013). https://doi.org/10.1109/SP.2013.47

  51. Ràfols, C., Zapico, A.: An algebraic framework for universal and updatable SNARKs. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 774–804. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_27

    Chapter  Google Scholar 

  52. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press (2014). https://doi.org/10.1145/2591796.2591825

  53. Waters, B., Wu, D.J.: Batch arguments for sfNP and more from standard bilinear group assumptions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 433–463. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15979-4_15

    Chapter  Google Scholar 

  54. Zhandry, M.: To label, or not to label (in generic groups). In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part III. LNCS, vol. 13509, pp. 66–96. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15982-4_3

    Chapter  Google Scholar 

  55. Zhang, C., Zhou, H.S., Katz, J.: An analysis of the algebraic group model. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part IV. LNCS, vol. 13794, pp. 310–322. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22972-5_11

    Chapter  Google Scholar 

Download references

Acknowledgment and History

The author became aware of the error in FANA in December 2021; the error was (partially) caused by the fact that he was severely sick when submitting [46] and its camera-ready version. We thank Daniel Wichs and anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helger Lipmaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lipmaa, H. (2023). On Black-Box Knowledge-Sound Commit-And-Prove SNARKs. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14439. Springer, Singapore. https://doi.org/10.1007/978-981-99-8724-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8724-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8723-8

  • Online ISBN: 978-981-99-8724-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics