[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SpectralTracker: Jointly High and Low-Frequency Modeling for Tracking

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14436))

Included in the following conference series:

  • 734 Accesses

Abstract

Recently, a considerable number of top-performing Transformer based trackers have been proposed. However, most of them mainly focus on utilizing low-frequency information from a spatial-spectral analysis perspective, limiting their performance in complicated scenes. To address this problem, we propose a spectral tracker that explores how to capture high and low-frequency information for robust tracking jointly. Specifically, we design a novel dual-spectral information extraction and aggregation module (DSM) consisting of a high and low-frequency branch to capture and combine complementary frequency information of a Transformer effectively. Firstly, we divide the local window in the high-frequency branch to focus on more fine-grained high-frequency information. Then, in the low-frequency branch, we apply AvgPooling with a low-pass effect on a Transformer to amplify its low-frequency information. Furthermore, we design a shared MLP strategy to polarize the dual-frequency branching to high and low-frequency information attention. Finally, we utilize an MLP to complementarily fuse high and low-frequency information for frequency domain modeling. Comprehensive experiments on five tracking benchmarks (i.e., GOT-10k, TrackingNet, LaSOT, UAV123 and TNL2K) show that our spectral tracker achieves better performance than the state-of-the-art trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional Siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  2. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with Siamese region proposal network. In: CVPR (2018)

    Google Scholar 

  3. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of Siamese visual tracking with very deep networks. In: CVPR (2019)

    Google Scholar 

  4. Chen, Z., Zhong, B., Li, G., Zhang, S., Ji, R.: Siamese box adaptive network for visual tracking. In: CVPR (2020)

    Google Scholar 

  5. Chen, X., Yan, B., Zhu, J., Wang, D., Yang, X., Lu, H.: Transformer tracking. In: CVPR (2021)

    Google Scholar 

  6. Yan, B., Peng, H., Fu, J., Wang, D., Lu, H.: Learning spatio-temporal transformer for visual tracking. In: ICCV, pp. 10428–10437 (2021)

    Google Scholar 

  7. Ye, B., Chang, H., Ma, B., Shan, S.: Joint feature learning and relation modeling for tracking: a one-stream framework. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV. LNCS, vol. 13682. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_20

  8. Guo, D., Wang, J., Cui, Y., Wang, Z., Chen, S.: SiamCAR: Siamese fully convolutional classification and regression for visual tracking. In: CVPR (2020)

    Google Scholar 

  9. Cui, Y., Jiang, C., Wang, L., Wu, G.: Target transformed regression for accurate tracking. arXiv Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  10. Wang, N., Zhou, W., Wang, J., Li, H.: Transformer meets tracker: exploiting temporal context for robust visual tracking. In: Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  11. Pan, Z., Cai, J., Zhuang, B.: Fast vision transformers with HiLo attention. CoRR (2022)

    Google Scholar 

  12. Si, C., Yu, W., Zhou, P., Zhou, Y., Wang, X., Yan, S.: Inception transformer. CoRR (2022)

    Google Scholar 

  13. Cui, Y., Jiang, C., Wang, L., Wu, G.: MixFormer: end-to-end tracking with iterative mixed attention. In: CVPR, pp. 13598–13608. IEEE (2022)

    Google Scholar 

  14. Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware Siamese networks for visual object tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 103–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_7

    Chapter  Google Scholar 

  15. Zheng, Y., Zhong, B., Liang, Q., Tang, Z., Ji, R., Li, X.: Leveraging local and global cues for visual tracking via parallel interaction network. IEEE Trans. Circuits Syst. Video Technol. 33(4), 1671–1683 (2022)

    Article  Google Scholar 

  16. Zhao, M., Okada, K., Inaba, M.: TrTr: visual tracking with transformer. arXiv preprint arXiv:2105.03817 (2021)

  17. Park, N., Kim, S.: How do vision transformers work? In: ICLR (2022)

    Google Scholar 

  18. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  19. Wu, H., et al.: CVT: introducing convolutions to vision transformers. In: ICCV, pp. 22–31. IEEE (2021)

    Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. In: Neural Information Processing Systems (2017)

    Google Scholar 

  21. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  22. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  23. Fan, H., et al.: LaSOT: a high-quality benchmark for large-scale single object tracking. In: CVPR (2019)

    Google Scholar 

  24. Huang, L., Zhao, X., Huang, K.: GOT-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1562–1577 (2021)

    Article  Google Scholar 

  25. Müller, M., Bibi, A., Giancola, S., Alsubaihi, S., Ghanem, B.: TrackingNet: a large-scale dataset and benchmark for object tracking in the wild. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 310–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_19

    Chapter  Google Scholar 

  26. Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: ICCV (2019)

    Google Scholar 

  27. Zhang, Z., Peng, H., Fu, J., Li, B., Hu, W.: Ocean: object-aware anchor-free tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 771–787. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_46

    Chapter  Google Scholar 

  28. Zhang, Z., Liu, Y., Wang, X., Li, B., Hu, W.: Learn to match: automatic matching network design for visual tracking. In: ICCV (2021)

    Google Scholar 

  29. Mayer, C., Danelljan, M., Paudel, D.P., Gool, L.V.: Learning target candidate association to keep track of what not to track. In: ICCV, pp. 13424–13434. IEEE (2021)

    Google Scholar 

  30. Ma, F., et al.: Unified transformer tracker for object tracking. In: CVPR (2022)

    Google Scholar 

  31. Song, Z., Yu, J., Chen, Y.P., Yang, W.: Transformer tracking with cyclic shifting window attention. In: CVPR (2022)

    Google Scholar 

  32. Gao, S., Zhou, C., Ma, C., Wang, X., Yuan, J.: AiATrack: attention in attention for transformer visual tracking. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. LNCS, vol. 13682, pp. 146–164. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_9

  33. Chen, B., et al.: Backbone is all your need: a simplified architecture for visual object tracking. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV. LNCS, vol. 12356. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-58621-8_6

  34. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 445–461. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_27

    Chapter  Google Scholar 

  35. Wang, X., et al.: Towards more flexible and accurate object tracking with natural language: algorithms and benchmark. In: CVPR (2021)

    Google Scholar 

  36. Fu, Z., Liu, Q., Fu, Z., Wang, Y.: STMTrack: template-free visual tracking with space-time memory networks. In: CVPR (2021)

    Google Scholar 

  37. Mayer, C., et al.: Transforming model prediction for tracking. In: CVPR (2022)

    Google Scholar 

  38. Guo, M., et al.: Learning target-aware representation for visual tracking via informative interactions. In: Raedt, L.D. (ed.) IJCAI (2022)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Project of Guangxi Science and Technology (No. 2022GXNSFDA035079), the National Natural Science Foundation of China (No. 61972167 and U21A20474), the Guangxi “Bagui Scholar” Teams for Innovation and Research Project, the Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing, the Guangxi Talent Highland Project of Big Data Intelligence and Application, and the Research Project of Guangxi Normal University (No. 2022TD002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihua Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rong, Y., Liang, Q., Li, N., Mo, Z., Zhong, B. (2024). SpectralTracker: Jointly High and Low-Frequency Modeling for Tracking. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14436. Springer, Singapore. https://doi.org/10.1007/978-981-99-8555-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8555-5_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8554-8

  • Online ISBN: 978-981-99-8555-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics