[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mobile-LRPose: Low-Resolution Representation Learning for Human Pose Estimation in Mobile Devices

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14429))

Included in the following conference series:

  • 672 Accesses

Abstract

Human pose estimation has made great progress in performance due to the development of deep learning. Current methods, including some lightweight networks, usually generate high-resolution heatmaps with rich position information to ensure high accuracy, however, the computational cost is heavy and sometimes unacceptable to mobile devices. In this paper, we construct a network backbone based on the modified MobileNetV2 to only generate low-resolution representations. Then, to enhance the capability of keypoints localization for our model, we also make crucial improvements consisting of bottleneck atrous spatial pyramid, local-space attention, coordinate attention and position embedding. In addition, we design two different network heads for 2D and 3D pose estimation to explore the extensibility of the backbone. Our model achieves superior performance to state-of-the-art lightweight 2D pose estimation models on both COCO and MPII datasets, which achieves 25+ FPS on HUWEI Kirin 9000 and outperforms MoveNet in the same device. Our 3D model also makes nearly 50% and 90% reduction on parameters and FLOPs compared to lightweight alternatives. Code is available at: https://github.com/NanXinyu/Mobile_LRPose.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Movenet. https://tensorflow.google.cn/hub/tutorials/movenet

  2. Yu, H., Du, C., Yu, L.: Scale-aware heatmap representation for human pose estimation. Pattern Recognit. Lett. 154, 1–6 (2022)

    Article  Google Scholar 

  3. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3686–3693 (2014)

    Google Scholar 

  4. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2021)

    Article  Google Scholar 

  5. Chen, C.H., Ramanan, D.: 3D human pose estimation = 2D pose estimation + matching. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5759–5767 (2017)

    Google Scholar 

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  7. Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T.S., Zhang, L.: Higherhrnet: scale-aware representation learning for bottom-up human pose estimation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5385–5394 (2020)

    Google Scholar 

  8. Choi, S., Choi, S., Kim, C.: Mobilehumanpose: toward real-time 3D human pose estimation in mobile devices. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2328–2338 (2021)

    Google Scholar 

  9. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997–2017 (2019)

    MathSciNet  Google Scholar 

  10. Geng, Z., Sun, K., Xiao, B., Zhang, Z., Wang, J.: Bottom-up human pose estimation via disentangled keypoint regression. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14671–14681 (2021)

    Google Scholar 

  11. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13708–13717 (2021)

    Google Scholar 

  12. Howard, A., et al.: Searching for MobileNetV3. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1314–1324 (2019)

    Google Scholar 

  13. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)

    Google Scholar 

  14. Li, J., et al.: Human pose regression with residual log-likelihood estimation. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11005–11014 (2021)

    Google Scholar 

  15. Li, Q., Zhang, Z., Xiao, F., Zhang, F., Bhanu, B.: Dite-HRNet: dynamic lightweight high-resolution network for human pose estimation. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 1095–1101 (2022)

    Google Scholar 

  16. Li, Y., et al.: SimCC: a simple coordinate classification perspective for human pose estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13666, pp. 89–106. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20068-7_6

    Chapter  Google Scholar 

  17. Li, Y., et al.: Tokenpose: learning keypoint tokens for human pose estimation. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11293–11302 (2021)

    Google Scholar 

  18. Lin, T.Y., et al.: Microsoft coco: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  19. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  20. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2659–2668 (2017)

    Google Scholar 

  21. Mehta, D., et al.: XNect: real-time multi-person 3D motion capture with a single RGB camera. ACM Trans. Graph. 39(4) (2020)

    Google Scholar 

  22. Moon, G., Chang, J., Lee, K.M.: Camera distance-aware top-down approach for 3D multi-person pose estimation from a single RGB image. In: The IEEE Conference on International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  23. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  24. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1263–1272 (2017)

    Google Scholar 

  25. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  26. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5686–5696 (2019)

    Google Scholar 

  27. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 536–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_33

    Chapter  Google Scholar 

  28. Toshev, A., Szegedy, C.: Deeppose: human pose estimation via deep neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1653–1660 (2014)

    Google Scholar 

  29. Wang, Y., Li, M., Cai, H., Chen, W., Han, S.: Lite pose: efficient architecture design for 2D human pose estimation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13116–13126 (2022)

    Google Scholar 

  30. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 472–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_29

    Chapter  Google Scholar 

  31. Xu, Y., Zhang, J., Zhang, Q., Tao, D.: Vitpose: simple vision transformer baselines for human pose estimation. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems, vol. 35, pp. 38571–38584. Curran Associates, Inc. (2022)

    Google Scholar 

  32. Yu, C., et al.: Lite-HRNet: a lightweight high-resolution network. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10435–10445 (2021)

    Google Scholar 

Download references

Acknowledge

This work is supported by the science and technology project fundings of State Grid Jiangsu Electric Power Co., Ltd. (J2023031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenxing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nan, X., Wang, C. (2024). Mobile-LRPose: Low-Resolution Representation Learning for Human Pose Estimation in Mobile Devices. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14429. Springer, Singapore. https://doi.org/10.1007/978-981-99-8469-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8469-5_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8468-8

  • Online ISBN: 978-981-99-8469-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics