Abstract
Human pose estimation has made great progress in performance due to the development of deep learning. Current methods, including some lightweight networks, usually generate high-resolution heatmaps with rich position information to ensure high accuracy, however, the computational cost is heavy and sometimes unacceptable to mobile devices. In this paper, we construct a network backbone based on the modified MobileNetV2 to only generate low-resolution representations. Then, to enhance the capability of keypoints localization for our model, we also make crucial improvements consisting of bottleneck atrous spatial pyramid, local-space attention, coordinate attention and position embedding. In addition, we design two different network heads for 2D and 3D pose estimation to explore the extensibility of the backbone. Our model achieves superior performance to state-of-the-art lightweight 2D pose estimation models on both COCO and MPII datasets, which achieves 25+ FPS on HUWEI Kirin 9000 and outperforms MoveNet in the same device. Our 3D model also makes nearly 50% and 90% reduction on parameters and FLOPs compared to lightweight alternatives. Code is available at: https://github.com/NanXinyu/Mobile_LRPose.git.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yu, H., Du, C., Yu, L.: Scale-aware heatmap representation for human pose estimation. Pattern Recognit. Lett. 154, 1–6 (2022)
Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3686–3693 (2014)
Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2021)
Chen, C.H., Ramanan, D.: 3D human pose estimation = 2D pose estimation + matching. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5759–5767 (2017)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)
Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T.S., Zhang, L.: Higherhrnet: scale-aware representation learning for bottom-up human pose estimation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5385–5394 (2020)
Choi, S., Choi, S., Kim, C.: Mobilehumanpose: toward real-time 3D human pose estimation in mobile devices. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2328–2338 (2021)
Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997–2017 (2019)
Geng, Z., Sun, K., Xiao, B., Zhang, Z., Wang, J.: Bottom-up human pose estimation via disentangled keypoint regression. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14671–14681 (2021)
Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13708–13717 (2021)
Howard, A., et al.: Searching for MobileNetV3. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1314–1324 (2019)
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)
Li, J., et al.: Human pose regression with residual log-likelihood estimation. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11005–11014 (2021)
Li, Q., Zhang, Z., Xiao, F., Zhang, F., Bhanu, B.: Dite-HRNet: dynamic lightweight high-resolution network for human pose estimation. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 1095–1101 (2022)
Li, Y., et al.: SimCC: a simple coordinate classification perspective for human pose estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13666, pp. 89–106. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20068-7_6
Li, Y., et al.: Tokenpose: learning keypoint tokens for human pose estimation. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11293–11302 (2021)
Lin, T.Y., et al.: Microsoft coco: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8
Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2659–2668 (2017)
Mehta, D., et al.: XNect: real-time multi-person 3D motion capture with a single RGB camera. ACM Trans. Graph. 39(4) (2020)
Moon, G., Chang, J., Lee, K.M.: Camera distance-aware top-down approach for 3D multi-person pose estimation from a single RGB image. In: The IEEE Conference on International Conference on Computer Vision (ICCV) (2019)
Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29
Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1263–1272 (2017)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5686–5696 (2019)
Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 536–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_33
Toshev, A., Szegedy, C.: Deeppose: human pose estimation via deep neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1653–1660 (2014)
Wang, Y., Li, M., Cai, H., Chen, W., Han, S.: Lite pose: efficient architecture design for 2D human pose estimation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13116–13126 (2022)
Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 472–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_29
Xu, Y., Zhang, J., Zhang, Q., Tao, D.: Vitpose: simple vision transformer baselines for human pose estimation. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems, vol. 35, pp. 38571–38584. Curran Associates, Inc. (2022)
Yu, C., et al.: Lite-HRNet: a lightweight high-resolution network. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10435–10445 (2021)
Acknowledge
This work is supported by the science and technology project fundings of State Grid Jiangsu Electric Power Co., Ltd. (J2023031).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Nan, X., Wang, C. (2024). Mobile-LRPose: Low-Resolution Representation Learning for Human Pose Estimation in Mobile Devices. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14429. Springer, Singapore. https://doi.org/10.1007/978-981-99-8469-5_17
Download citation
DOI: https://doi.org/10.1007/978-981-99-8469-5_17
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8468-8
Online ISBN: 978-981-99-8469-5
eBook Packages: Computer ScienceComputer Science (R0)