[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Shape-constrained Symbolic Regression: Real-World Applications in Magnetization, Extrusion and Data Validation

  • Chapter
  • First Online:
Genetic Programming Theory and Practice XX

Abstract

We present different approaches for including knowledge in data-based modeling. For this, we utilize the model representation of symbolic regression (SR), which represents the models as short interpretable mathematical formulas. The integration of knowledge into symbolic regression via shape constraints is discussed alongside three real-world applications: modeling magnetization curves, modeling twin-screw extruders and model-based data validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asadzadeh, M.Z., Gänser, H.-P., Mücke, M.: Symbolic regression based hybrid semiparametric modelling of processes: an example case of a bending process. Appl. Eng. Sci. 6, 100049 (2021)

    Google Scholar 

  2. Auguste, C., Malory, S., Smirnov, I.: A better method to enforce monotonic constraints in regression and classification trees (2020). arXiv:2011.00986

  3. Bachinger, F., Kronberger, G.: Comparing shape-constrained regression algorithms for data validation. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory—EUROCAST 2022, pp. 147–154. Springer Nature Switzerland, Cham (2022)

    Google Scholar 

  4. Baker, N., Alexander, F., Bremer, T., Hagberg, A., Kevrekidis, Y., Najm, H., Parashar, M., Patra, A., Sethian, J., Wild, S., et al.: Workshop report on basic research needs for scientific machine learning: Core technologies for artificial intelligence (2019)

    Google Scholar 

  5. Barlow, R.E., Brunk, H.D.: The isotonic regression problem and its dual. J. Am. Stat. Assoc. 67(337), 140–147 (1972)

    Article  MathSciNet  Google Scholar 

  6. Bladek, I., Krawiec, K.: Solving symbolic regression problems with formal constraints. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’19, pp. 977–984. Association for Computing Machinery, New York, NY, USA (2019)

    Google Scholar 

  7. Coello Coello, C.A.: Constraint-handling techniques used with evolutionary algorithms. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, GECCO ’16 Companion, pp. 563–587. Association for Computing Machinery, New York, NY, USA (2016)

    Google Scholar 

  8. Curmei, M., Hall, G.: Shape-constrained regression using sum of squares polynomials (2022)

    Google Scholar 

  9. de França, F.O.: A greedy search tree heuristic for symbolic regression. Inf. Sci. 442, 18–32 (2018)

    Article  MathSciNet  Google Scholar 

  10. de Franca, F.O., Aldeia, G.S.I.: Interaction-transformation evolutionary algorithm for symbolic regression. Evol. Comput. 29(3), 367–390 (2021)

    Article  Google Scholar 

  11. Haider, C., de Franca, F., Burlacu, B., Kronberger, G.: Shape-constrained multi-objective genetic programming for symbolic regression. Appl. Soft Comput. 132, 109855 (2023)

    Article  Google Scholar 

  12. Haider, C., de França, F.O., Kronberger, G., Burlacu, B.: Comparing optimistic and pessimistic constraint evaluation in shape-constrained symbolic regression. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’22, pp. 938–945. Association for Computing Machinery, New York, NY, USA (2022)

    Google Scholar 

  13. Haider, C., Kronberger, G.: Shape-constrained symbolic regression with NSGA-III. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory—EUROCAST 2022, pp. 164–172. Springer Nature Switzerland, Cham (2022)

    Google Scholar 

  14. Hickey, T., Ju, Q., Van Emden, M.H.: Interval arithmetic: from principles to implementation. J. ACM 48(5), 1038–1068 (2001)

    Google Scholar 

  15. Kimbrough, S.O., Koehler, G.J., Lu, M., Wood, D.H.: On a feasible-infeasible two-population (fi-2pop) genetic algorithm for constrained optimization: distance tracing and no free lunch. Eur. J. Oper. Res. 190(2), 310–327 (2008)

    Article  MathSciNet  Google Scholar 

  16. Kimbrough, S.O., Koehler, G.J., Lu, M.-C., Wood, D.H.: On a feasible-infeasible two-population (fi-2pop) genetic algorithm for constrained optimization: distance tracing and no free lunch. Euopean J. Oper. Res. 190, 310–327 (2008)

    Article  MathSciNet  Google Scholar 

  17. Kronberger, G., de Franca, F.O., Burlacu, B., Haider, C., Kommenda, M.: Shape-constrained symbolic regression-improving extrapolation with prior knowledge. Evol. Comput. 30(1), 75–98 (2022)

    Google Scholar 

  18. Kronberger, G., Kommenda, M., Promberger, A., Nickel, F.: Predicting friction system performance with symbolic regression and genetic programming with factor variables. In: Aguirre, H.E., Takadama, K. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018, pp. 1278–1285. ACM (2018)

    Google Scholar 

  19. Kubalík, J., Derner, E., Babuška, R.: Symbolic regression driven by training data and prior knowledge. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, GECCO ’20, pp. 958–966. Association for Computing Machinery, New York, NY, USA (2020)

    Google Scholar 

  20. Li, L., Fan, M., Singh, R., Riley, P.: Neural-guided symbolic regression with asymptotic constraints (2019). arXiv:1901.07714

  21. Lodwick, W.A.: Constrained Interval Arithmetic. Technical report, USA (1999)

    Google Scholar 

  22. Muralidhar, N., Islam, M.R., Marwah, M., Karpatne, A., Ramakrishnan, N.: Incorporating prior domain knowledge into deep neural networks. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 36–45. IEEE (2018)

    Google Scholar 

  23. Neelon, B., Dunson, D.B.: Bayesian isotonic regression and trend analysis. Biom. 60(2), 398–406 (2004)

    Article  MathSciNet  Google Scholar 

  24. Papp, D., Alizadeh, F.: Shape-constrained estimation using nonnegative splines. J. Comput. Graph. Stat. 23(1), 211–231 (2014)

    Article  MathSciNet  Google Scholar 

  25. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology (2000)

    Google Scholar 

  26. Piringer, D., Wagner, S., Haider, C., Fohler, A., Silber, S., Affenzeller, M.: Improving the flexibility of shape-constrained symbolic regression with extended constraints. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory—EUROCAST 2022, pp. 155–163. Springer Nature Switzerland, Cham (2022)

    Google Scholar 

  27. Rai, A.: Explainable AI: From black box to glass box. J. Acad. Mark. Sci. 48, 137–141 (2020)

    Article  Google Scholar 

  28. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  29. Stewart, R., Ermon, S.: Label-free supervision of neural networks with physics and domain knowledge. Proc. AAAI Conf. Artif. Intell. 31(1), (2017)

    Google Scholar 

  30. Tibshirani, R.J., Hoefling, H., Tibshirani, R.: Nearly-isotonic regression. Technometrics 53(1), 54–61 (2011)

    Article  MathSciNet  Google Scholar 

  31. van de Schoot, R., Depaoli, S., King, R., Kramer, B., Märtens, K., Tadesse, M.G., Vannucci, M., Gelman, A., Veen, D., Willemsen, J., et al.: Bayesian statistics and modelling. Nat. Rev. Methods Prim. 1(1), 1 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the federal state of Upper Austria for funding the research project FinCoM (Financial Condition Monitoring) and thus, the underlying research of this study. Furthermore, the authors thank the federal state of Upper Austria as part of the program “#upperVISION2030” for funding the research project SPA (Secure Prescriptive Analytics) and thus, the research of parts of this study. This project was partially funded by Fundaçao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), grant number 2021/12706-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Haider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haider, C., de Franca, F.O., Burlacu, B., Bachinger, F., Kronberger, G., Affenzeller, M. (2024). Shape-constrained Symbolic Regression: Real-World Applications in Magnetization, Extrusion and Data Validation. In: Winkler, S., Trujillo, L., Ofria, C., Hu, T. (eds) Genetic Programming Theory and Practice XX. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-99-8413-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8413-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8412-1

  • Online ISBN: 978-981-99-8413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics