Abstract
We present different approaches for including knowledge in data-based modeling. For this, we utilize the model representation of symbolic regression (SR), which represents the models as short interpretable mathematical formulas. The integration of knowledge into symbolic regression via shape constraints is discussed alongside three real-world applications: modeling magnetization curves, modeling twin-screw extruders and model-based data validation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Asadzadeh, M.Z., Gänser, H.-P., Mücke, M.: Symbolic regression based hybrid semiparametric modelling of processes: an example case of a bending process. Appl. Eng. Sci. 6, 100049 (2021)
Auguste, C., Malory, S., Smirnov, I.: A better method to enforce monotonic constraints in regression and classification trees (2020). arXiv:2011.00986
Bachinger, F., Kronberger, G.: Comparing shape-constrained regression algorithms for data validation. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory—EUROCAST 2022, pp. 147–154. Springer Nature Switzerland, Cham (2022)
Baker, N., Alexander, F., Bremer, T., Hagberg, A., Kevrekidis, Y., Najm, H., Parashar, M., Patra, A., Sethian, J., Wild, S., et al.: Workshop report on basic research needs for scientific machine learning: Core technologies for artificial intelligence (2019)
Barlow, R.E., Brunk, H.D.: The isotonic regression problem and its dual. J. Am. Stat. Assoc. 67(337), 140–147 (1972)
Bladek, I., Krawiec, K.: Solving symbolic regression problems with formal constraints. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’19, pp. 977–984. Association for Computing Machinery, New York, NY, USA (2019)
Coello Coello, C.A.: Constraint-handling techniques used with evolutionary algorithms. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, GECCO ’16 Companion, pp. 563–587. Association for Computing Machinery, New York, NY, USA (2016)
Curmei, M., Hall, G.: Shape-constrained regression using sum of squares polynomials (2022)
de França, F.O.: A greedy search tree heuristic for symbolic regression. Inf. Sci. 442, 18–32 (2018)
de Franca, F.O., Aldeia, G.S.I.: Interaction-transformation evolutionary algorithm for symbolic regression. Evol. Comput. 29(3), 367–390 (2021)
Haider, C., de Franca, F., Burlacu, B., Kronberger, G.: Shape-constrained multi-objective genetic programming for symbolic regression. Appl. Soft Comput. 132, 109855 (2023)
Haider, C., de França, F.O., Kronberger, G., Burlacu, B.: Comparing optimistic and pessimistic constraint evaluation in shape-constrained symbolic regression. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’22, pp. 938–945. Association for Computing Machinery, New York, NY, USA (2022)
Haider, C., Kronberger, G.: Shape-constrained symbolic regression with NSGA-III. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory—EUROCAST 2022, pp. 164–172. Springer Nature Switzerland, Cham (2022)
Hickey, T., Ju, Q., Van Emden, M.H.: Interval arithmetic: from principles to implementation. J. ACM 48(5), 1038–1068 (2001)
Kimbrough, S.O., Koehler, G.J., Lu, M., Wood, D.H.: On a feasible-infeasible two-population (fi-2pop) genetic algorithm for constrained optimization: distance tracing and no free lunch. Eur. J. Oper. Res. 190(2), 310–327 (2008)
Kimbrough, S.O., Koehler, G.J., Lu, M.-C., Wood, D.H.: On a feasible-infeasible two-population (fi-2pop) genetic algorithm for constrained optimization: distance tracing and no free lunch. Euopean J. Oper. Res. 190, 310–327 (2008)
Kronberger, G., de Franca, F.O., Burlacu, B., Haider, C., Kommenda, M.: Shape-constrained symbolic regression-improving extrapolation with prior knowledge. Evol. Comput. 30(1), 75–98 (2022)
Kronberger, G., Kommenda, M., Promberger, A., Nickel, F.: Predicting friction system performance with symbolic regression and genetic programming with factor variables. In: Aguirre, H.E., Takadama, K. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018, pp. 1278–1285. ACM (2018)
Kubalík, J., Derner, E., Babuška, R.: Symbolic regression driven by training data and prior knowledge. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, GECCO ’20, pp. 958–966. Association for Computing Machinery, New York, NY, USA (2020)
Li, L., Fan, M., Singh, R., Riley, P.: Neural-guided symbolic regression with asymptotic constraints (2019). arXiv:1901.07714
Lodwick, W.A.: Constrained Interval Arithmetic. Technical report, USA (1999)
Muralidhar, N., Islam, M.R., Marwah, M., Karpatne, A., Ramakrishnan, N.: Incorporating prior domain knowledge into deep neural networks. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 36–45. IEEE (2018)
Neelon, B., Dunson, D.B.: Bayesian isotonic regression and trend analysis. Biom. 60(2), 398–406 (2004)
Papp, D., Alizadeh, F.: Shape-constrained estimation using nonnegative splines. J. Comput. Graph. Stat. 23(1), 211–231 (2014)
Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology (2000)
Piringer, D., Wagner, S., Haider, C., Fohler, A., Silber, S., Affenzeller, M.: Improving the flexibility of shape-constrained symbolic regression with extended constraints. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory—EUROCAST 2022, pp. 155–163. Springer Nature Switzerland, Cham (2022)
Rai, A.: Explainable AI: From black box to glass box. J. Acad. Mark. Sci. 48, 137–141 (2020)
Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)
Stewart, R., Ermon, S.: Label-free supervision of neural networks with physics and domain knowledge. Proc. AAAI Conf. Artif. Intell. 31(1), (2017)
Tibshirani, R.J., Hoefling, H., Tibshirani, R.: Nearly-isotonic regression. Technometrics 53(1), 54–61 (2011)
van de Schoot, R., Depaoli, S., King, R., Kramer, B., Märtens, K., Tadesse, M.G., Vannucci, M., Gelman, A., Veen, D., Willemsen, J., et al.: Bayesian statistics and modelling. Nat. Rev. Methods Prim. 1(1), 1 (2021)
Acknowledgements
The authors gratefully acknowledge the federal state of Upper Austria for funding the research project FinCoM (Financial Condition Monitoring) and thus, the underlying research of this study. Furthermore, the authors thank the federal state of Upper Austria as part of the program “#upperVISION2030” for funding the research project SPA (Secure Prescriptive Analytics) and thus, the research of parts of this study. This project was partially funded by Fundaçao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), grant number 2021/12706-1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Haider, C., de Franca, F.O., Burlacu, B., Bachinger, F., Kronberger, G., Affenzeller, M. (2024). Shape-constrained Symbolic Regression: Real-World Applications in Magnetization, Extrusion and Data Validation. In: Winkler, S., Trujillo, L., Ofria, C., Hu, T. (eds) Genetic Programming Theory and Practice XX. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-99-8413-8_12
Download citation
DOI: https://doi.org/10.1007/978-981-99-8413-8_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8412-1
Online ISBN: 978-981-99-8413-8
eBook Packages: Computer ScienceComputer Science (R0)