[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Interpretable 3D Multi-modal Residual Convolutional Neural Network for Mild Traumatic Brain Injury Diagnosis

  • Conference paper
  • First Online:
AI 2023: Advances in Artificial Intelligence (AI 2023)

Abstract

Mild Traumatic Brain Injury (mTBI) is a significant public health challenge due to its high prevalence and potential for long-term health effects. Despite Computed Tomography (CT) being the standard diagnostic tool for mTBI, it often yields normal results in mTBI patients despite symptomatic evidence. This fact underscores the complexity of accurate diagnosis. In this study, we introduce an interpretable 3D Multi-Modal Residual Convolutional Neural Network (MRCNN) for mTBI diagnostic model enhanced with Occlusion Sensitivity Maps (OSM). Our MRCNN model exhibits promising performance in mTBI diagnosis, demonstrating an average accuracy of 82.4%, sensitivity of 82.6%, and specificity of 81.6%, as validated by a five-fold cross-validation process. Notably, in comparison to the CT-based Residual Convolutional Neural Network (RCNN) model, the MRCNN shows an improvement of 4.4% in specificity and 9.0% in accuracy. We show that the OSM offers superior data-driven insights into CT images compared to the Grad-CAM approach. These results highlight the efficacy of the proposed multi-modal model in enhancing the diagnostic precision of mTBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Binder, S., Gerberding, J.L.: Report to congress on mild traumatic brain injury in the United States: steps to prevent a serious public health problem. Centers for Disease Control and Prevention (2003)

    Google Scholar 

  2. Diaz-Arrastia, R., et al.: Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-l1 and glial fibrillary acidic protein. J. Neurotrauma 31, 19–25 (2014). https://doi.org/10.1089/neu.2013.3040

    Article  Google Scholar 

  3. Korley, F.K., Kelen, G.D., Jones, C.M., Diaz-Arrastia, R.: Emergency department evaluation of traumatic brain injury in the United States, 2009–2010. J. Head Trauma Rehabil. 31, 379 (2016). https://doi.org/10.1097/HTR.0000000000000187

    Article  Google Scholar 

  4. Easter, J.S., Haukoos, J.S., Meehan, W.P., Novack, V., Edlow, J.A.: Will neuroimaging reveal a severe intracranial injury in this adult with minor head trauma?: The rational clinical examination systematic review. JAMA 314(24), 2672–2681 (2015). https://doi.org/10.1001/jama.2015.16316

    Article  Google Scholar 

  5. Schweitzer, A.D., Niogi, S.N., Whitlow, C.T., Tsiouris, A.J.: Traumatic brain injury: imaging patterns and complications. Radiographics 39(6), 1571–1595 (2019). https://doi.org/10.1148/rg.2019190076

    Article  Google Scholar 

  6. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017). https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  7. Ellethy, H., Chandra, S.S., Nasrallah, F.A.: Deep neural networks predict the need for CT in pediatric mild traumatic brain injury: a corroboration of the PECARN rule. J. Am. Coll. Radiol. 19(6), 769–778 (2022). https://doi.org/10.1016/j.jacr.2022.02.024

    Article  Google Scholar 

  8. Mohd Noor, N.S.E., Ibrahim, H.: Predicting Outcomes in patients with traumatic brain injury using machine learning models. In: Jamaludin, Z., Ali Mokhtar, M.N. (eds.) SympoSIMM 2019. LNME, pp. 12–20. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9539-0_2

    Chapter  Google Scholar 

  9. Yoon, B.C., et al.: Incorporating algorithmic uncertainty into a clinical machine deep learning algorithm for urgent head CTs. PLoS One 18(3), e0281900 (2023)

    Article  Google Scholar 

  10. Ellethy, H., Chandra, S.S., Nasrallah, F.A.: The detection of mild traumatic brain injury in paediatrics using artificial neural networks. Comput. Biol. Med. 135, 104614 (2021). https://doi.org/10.1016/J.COMPBIOMED.2021.104614

    Article  Google Scholar 

  11. Su, Y.R.S., Schuster, J.M., Smith, D.H., Stein, S.C.: Cost-effectiveness of biomarker screening for traumatic brain injury. J. Neurotrauma (2019). https://doi.org/10.1089/neu.2018.6020

  12. Keshavamurthy, K.N., et al.: Machine learning algorithm for automatic detection of CT-identifiable hyperdense lesions associated with traumatic brain injury. In: Medical Imaging 2017: Computer-Aided Diagnosis (2017). https://doi.org/10.1117/12.2254227

  13. Detone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2018). https://doi.org/10.1109/CVPRW.2018.00060

  14. Chilamkurthy, S., et al.: Development and validation of deep learning algorithms for detection of critical findings in head CT scans. arXiv Preprint arXiv:1803.05854 (2018)

  15. Monteiro, M., et al.: Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study. Lancet Digit. Heal. 2, e314–e322 (2020). https://doi.org/10.1016/S2589-7500(20)30085-6

    Article  Google Scholar 

  16. Tamez-Peña, J., et al.: Post-concussive mTBI in student athletes: MRI features and machine learning. Front. Neurol. 12, 2351 (2022)

    Article  Google Scholar 

  17. Bostami, B., Espinoza, F.A., van der Horn, H.J., van der Naalt, J., Calhoun, V.D., Vergara, V.M.: Multi-site mild traumatic brain injury classification with machine learning and harmonization. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 537–540 (2022). https://doi.org/10.1109/EMBC48229.2022.9871869

  18. Harrington, D.L., et al.: Detection of chronic blast-related mild traumatic brain injury with diffusion tensor imaging and support vector machines. Diagnostics 12(4), 987 (2022)

    Article  Google Scholar 

  19. Yue, J.K., et al.: Transforming research and clinical knowledge in traumatic brain injury pilot: Multicenter implementation of the common data elements for traumatic brain injury. J. Neurotrauma 30, 1831–1844 (2013). https://doi.org/10.1089/neu.2013.2970

    Article  Google Scholar 

  20. N I T R C. https://www.nitrc.org/. Accessed 25 Mar 2021

  21. Lolli, V., Pezzullo, M., Delpierre, I., Sadeghi, N.: MDCT imaging of traumatic brain injury. Br. J. Radiol. 89(1061), 20150849 (2016)

    Article  Google Scholar 

  22. Zunair, H., Rahman, A., Mohammed, N., Cohen, J.P.: Uniformizing techniques to process CT scans with 3D CNNs for tuberculosis prediction. In: Rekik, I., Adeli, E., Park, S.H., Valdés Hernández, M.D.C. (eds.) PRIME 2020. LNCS, vol. 12329, pp. 156–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59354-4_15

    Chapter  Google Scholar 

  23. Goenka, N., Tiwari, S.: AlzVNet: A volumetric convolutional neural network for multiclass classification of Alzheimer’s disease through multiple neuroimaging computational approaches. Biomed. Signal Process. Control 74, 103500 (2022). https://doi.org/10.1016/j.bspc.2022.103500

    Article  Google Scholar 

  24. Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in healthcare. arXiv Preprint arXiv:2211.02701 (2022)

  25. Liu, L., et al.: On the variance of the adaptive learning rate and beyond. arXiv Preprint arXiv:1908.03265 (2019)

  26. Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts. arXiv Preprint arXiv:1608.03983 (2016)

  27. Monteiro, M., et al.: TBI lesion segmentation in head CT: Impact of preprocessing and data augmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS (LNAI and LNB), vol. 11992, pp. 13–22. Springer, Cham (2020)

    Google Scholar 

  28. Powers, D.M.W.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. (2011)

    Google Scholar 

  29. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  30. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  31. Aminu, M., Ahmad, N.A., Mohd Noor, M.H.: Covid-19 detection via deep neural network and occlusion sensitivity maps. Alex. Eng. J. 60(5), 4829–4855 (2021). https://doi.org/10.1016/j.aej.2021.03.052

    Article  Google Scholar 

  32. Rieke, J., Eitel, F., Weygandt, M., Haynes, J.-D., Ritter, K.: Visualizing convolutional networks for MRI-based diagnosis of Alzheimer’s disease. In: Stoyanov, D., et al. (eds.) MLCN DLF IMIMIC 2018. LNCS, vol. 11038, pp. 24–31. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02628-8_3

    Chapter  Google Scholar 

Download references

Acknowledgement

NITRC, NITRC-IR, and NITRC-CE have been funded in whole or in part with Federal funds from the Department of Health and Human Services, National Institute of Biomedical Imaging and Bioengineering, the National Institute of Neurological Disorders and Stroke, under the following NIH grants: 1R43NS074540, 2R44NS074540, and 1U24EB023398 and previously GSA Contract No. GS-00F-0034P, Order Number HHSN268200100090U. Moreover, we would like to acknowledge the principal investigators of the TRACK TBI Pilot research program, the sub-investigators and research teams that contributed to TRACK TBI Pilot, and the patients who participated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanem Ellethy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ellethy, H., Vegh, V., Chandra, S.S. (2024). Interpretable 3D Multi-modal Residual Convolutional Neural Network for Mild Traumatic Brain Injury Diagnosis. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds) AI 2023: Advances in Artificial Intelligence. AI 2023. Lecture Notes in Computer Science(), vol 14471. Springer, Singapore. https://doi.org/10.1007/978-981-99-8388-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8388-9_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8387-2

  • Online ISBN: 978-981-99-8388-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics