Abstract
Forecasting time series data is a critical area of research with applications spanning from stock prices to early epidemic prediction. While numerous statistical and machine learning methods have been proposed, real-life prediction problems often require hybrid solutions that bridge classical forecasting approaches and modern neural network models. In this study, we introduce a Probabilistic AutoRegressive Neural Network (PARNN), capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns. PARNN is constructed by improving autoregressive neural networks (ARNN) using autoregressive integrated moving average (ARIMA) feedback error. Notably, the PARNN model provides uncertainty quantification through prediction intervals and conformal predictions setting it apart from advanced deep learning tools. Through comprehensive computational experiments, we evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models. Diverse real-world datasets from macroeconomics, tourism, epidemiology, and other domains are employed for short-term, medium-term, and long-term forecasting evaluations. Our results demonstrate the superiority of PARNN across various forecast horizons, surpassing the state-of-the-art forecasters. The proposed PARNN model offers a valuable hybrid solution for accurate long-range forecasting. The ability to quantify uncertainty through prediction intervals further enhances the model’s usefulness in various decision-making processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Babu, C.N., Reddy, B.E.: A moving-average filter based hybrid Arima-Ann model for forecasting time series data. Appl. Soft Comput. 23, 27–38 (2014)
Bates, J.M., Granger, C.W.: The combination of forecasts. J. Oper. Res. Soc. 20(4), 451–468 (1969)
Bhattacharyya, A., Chakraborty, T., Rai, S.N.: Stochastic forecasting of COVID-19 daily new cases across countries with a novel hybrid time series model. Nonlinear Dyn. 107, 1–16 (2022)
Bhattacharyya, A., Chattopadhyay, S., Pattnaik, M., Chakraborty, T.: Theta autoregressive neural network: a hybrid time series model for pandemic forecasting. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)
Box, G.E., Pierce, D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Stat. Assoc. 65(332), 1509–1526 (1970)
Cao, J., Li, Z., Li, J.: Financial time series forecasting model based on Ceemdan and LSTM. Phys. A 519, 127–139 (2019)
Chakraborty, T., Chakraborty, A.K., Biswas, M., Banerjee, S., Bhattacharya, S.: Unemployment rate forecasting: a hybrid approach. Comput. Econ. 57, 1–19 (2020)
Chakraborty, T., Chattopadhyay, S., Ghosh, I.: Forecasting dengue epidemics using a hybrid methodology. Phys. A Statist. Mech. Appl. 527, 121266 (2019)
Chakraborty, T., Ghosh, I.: Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: a data-driven analysis. Chaos, Solitons Fractals 135, 109850 (2020)
Chakraborty, T., Ghosh, I., Mahajan, T., Arora, T.: Nowcasting of COVID-19 confirmed cases: foundations, trends, and challenges. In: Modeling, Control and Drug Development for COVID-19 Outbreak Prevention, pp. 1023–1064 (2022)
Chen, Y., Kang, Y., Chen, Y., Wang, Z.: Probabilistic forecasting with temporal convolutional neural network. Neurocomputing 399, 491–501 (2020)
Connor, J.T., Martin, R.D., Atlas, L.E.: Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 5(2), 240–254 (1994)
Dave, E., Leonardo, A., Jeanice, M., Hanafiah, N.: Forecasting Indonesia exports using a hybrid model Arima-LSTM. Proc. Comput. Sci. 179, 480–487 (2021)
De Livera, A.M., Hyndman, R.J., Snyder, R.D.: Forecasting time series with complex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 106(496), 1513–1527 (2011)
Egrioglu, E., Yolcu, U., Aladag, C.H., Bas, E.: Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Neural Process. Lett. 41(2), 249–258 (2015)
Entorf, H.: Random walks with drifts: nonsense regression and spurious fixed-effect estimation. J. Economet. 80(2), 287–296 (1997)
Faraway, J., Chatfield, C.: Time series forecasting with neural networks: a comparative study using the air line data. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 47(2), 231–250 (1998)
Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)
Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Comput. 4(1), 1–58 (1992)
Herzen, J., et al.: Darts: User-friendly modern machine learning for time series. J. Mach. Learn. Res. 23(124), 1–6 (2022)
Hyndman, R., Koehler, A.B., Ord, J.K., Snyder, R.D.: Forecasting with Exponential Smoothing: the State Space Approach, 1st edn. Springer Science & Business Media, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71918-2
Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts (2018)
Hyndman, R.J., et al.: Package ‘forecast’ (2020). https://cran.r-project.org/web/packages/forecast/forecast
Hyndman, R.J., Ullah, M.S.: Robust forecasting of mortality and fertility rates: a functional data approach. Comput. Statist. Data Anal. 51(10), 4942–4956 (2007)
Karmy, J.P., Maldonado, S.: Hierarchical time series forecasting via support vector regression in the European travel retail industry. Expert Syst. Appl. 137, 59–73 (2019)
Khashei, M., Bijari, M.: An artificial neural network (p, d, q) model for time series forecasting. Expert Syst. Appl. 37(1), 479–489 (2010)
Kodogiannis, V., Lolis, A.: Forecasting financial time series using neural network and fuzzy system-based techniques. Neural Comput. App. 11(2), 90–102 (2002)
Koning, A.J., Franses, P.H., Hibon, M., Stekler, H.O.: The m3 competition: statistical tests of the results. Int. J. Forecast. 21(3), 397–409 (2005)
Kourentzes, N.: nnfor: Time series forecasting with neural networks. R package version 0.9. 6 (2017)
Leoni, P.: Long-range out-of-sample properties of autoregressive neural networks. Neural Comput. 21(1), 1–8 (2009)
Nochai, R., Nochai, T.: Arima model for forecasting oil palm price. In: Proceedings of the 2nd IMT-GT Regional Conference on Mathematics, Statistics and Applications, pp. 13–15 (2006)
Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-beats: neural basis expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437 (2019)
Panigrahi, S., Behera, H.S.: A hybrid ETS-ANN model for time series forecasting. Eng. Appl. Artif. Intell. 66, 49–59 (2017)
Panja, M., Chakraborty, T., Kumar, U., Liu, N.: Epicasting: an ensemble wavelet neural network for forecasting epidemics. Neural Networks (2023)
Qin, Y., et al.: Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal. Appl. Energy 236, 262–272 (2019)
Ray, A., Chakraborty, T., Ghosh, D.: Optimized ensemble deep learning framework for scalable forecasting of dynamics containing extreme events. Chaos Interdiscip. J. Nonlinear Sci. 31(11), 111105 (2021)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533 (1986)
Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–1191 (2020)
Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V.K., Soman, K.: Stock price prediction using LSTM, RNN and CNN-sliding window model. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1643–1647. IEEE (2017)
Shahwan, T., Odening, M.: Forecasting agricultural commodity prices using hybrid neural networks. In: Chen, S.H., Wang, P.P., Kuo, T.W. (eds.) Computational Intelligence in Economics and Finance, pp. 63–74. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72821-4_3
Vautard, R., Beekmann, M., Roux, J., Gombert, D.: Validation of a hybrid forecasting system for the ozone concentrations over the Paris area. Atmos. Environ. 35(14), 2449–2461 (2001)
Vovk, V., Gammerman, A., Shafer, G.: Conformal prediction. In: Vovk, V., Gammerman, A., Shafer, G. (eds.) Algorithmic Learning in a Random World, pp. 17–51. Springer, Boston (2005). https://doi.org/10.1007/0-387-25061-1_2
Wang, X., Hyndman, R.J., Li, F., Kang, Y.: Forecast combinations: an over 50-year review. arXiv preprint arXiv:2205.04216 (2022)
Winters, P.R.: Forecasting sales by exponentially weighted moving averages. Manage. Sci. 6(3), 324–342 (1960)
Wu, N., Green, B., Ben, X., O’Banion, S.: Deep transformer models for time series forecasting: The influenza prevalence case. arXiv preprint arXiv:2001.08317 (2020)
Xu, S., Chan, H.K., Zhang, T.: Forecasting the demand of the aviation industry using hybrid time series Sarima-SVR approach. Transp. Res. Part E Logist. Transp. Rev. 122, 169–180 (2019)
Zhang, G.P.: Time series forecasting using a hybrid Arima and neural network model. Neurocomputing 50, 159–175 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Panja, M., Chakraborty, T., Kumar, U., Hadid, A. (2024). Probabilistic AutoRegressive Neural Networks for Accurate Long-Range Forecasting. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1967. Springer, Singapore. https://doi.org/10.1007/978-981-99-8178-6_35
Download citation
DOI: https://doi.org/10.1007/978-981-99-8178-6_35
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8177-9
Online ISBN: 978-981-99-8178-6
eBook Packages: Computer ScienceComputer Science (R0)