[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Probabilistic AutoRegressive Neural Networks for Accurate Long-Range Forecasting

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1967))

Included in the following conference series:

  • 753 Accesses

Abstract

Forecasting time series data is a critical area of research with applications spanning from stock prices to early epidemic prediction. While numerous statistical and machine learning methods have been proposed, real-life prediction problems often require hybrid solutions that bridge classical forecasting approaches and modern neural network models. In this study, we introduce a Probabilistic AutoRegressive Neural Network (PARNN), capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns. PARNN is constructed by improving autoregressive neural networks (ARNN) using autoregressive integrated moving average (ARIMA) feedback error. Notably, the PARNN model provides uncertainty quantification through prediction intervals and conformal predictions setting it apart from advanced deep learning tools. Through comprehensive computational experiments, we evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models. Diverse real-world datasets from macroeconomics, tourism, epidemiology, and other domains are employed for short-term, medium-term, and long-term forecasting evaluations. Our results demonstrate the superiority of PARNN across various forecast horizons, surpassing the state-of-the-art forecasters. The proposed PARNN model offers a valuable hybrid solution for accurate long-range forecasting. The ability to quantify uncertainty through prediction intervals further enhances the model’s usefulness in various decision-making processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Babu, C.N., Reddy, B.E.: A moving-average filter based hybrid Arima-Ann model for forecasting time series data. Appl. Soft Comput. 23, 27–38 (2014)

    Article  Google Scholar 

  2. Bates, J.M., Granger, C.W.: The combination of forecasts. J. Oper. Res. Soc. 20(4), 451–468 (1969)

    Article  Google Scholar 

  3. Bhattacharyya, A., Chakraborty, T., Rai, S.N.: Stochastic forecasting of COVID-19 daily new cases across countries with a novel hybrid time series model. Nonlinear Dyn. 107, 1–16 (2022)

    Article  Google Scholar 

  4. Bhattacharyya, A., Chattopadhyay, S., Pattnaik, M., Chakraborty, T.: Theta autoregressive neural network: a hybrid time series model for pandemic forecasting. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

  5. Box, G.E., Pierce, D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Stat. Assoc. 65(332), 1509–1526 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, J., Li, Z., Li, J.: Financial time series forecasting model based on Ceemdan and LSTM. Phys. A 519, 127–139 (2019)

    Article  Google Scholar 

  7. Chakraborty, T., Chakraborty, A.K., Biswas, M., Banerjee, S., Bhattacharya, S.: Unemployment rate forecasting: a hybrid approach. Comput. Econ. 57, 1–19 (2020)

    Google Scholar 

  8. Chakraborty, T., Chattopadhyay, S., Ghosh, I.: Forecasting dengue epidemics using a hybrid methodology. Phys. A Statist. Mech. Appl. 527, 121266 (2019)

    Article  Google Scholar 

  9. Chakraborty, T., Ghosh, I.: Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: a data-driven analysis. Chaos, Solitons Fractals 135, 109850 (2020)

    Article  Google Scholar 

  10. Chakraborty, T., Ghosh, I., Mahajan, T., Arora, T.: Nowcasting of COVID-19 confirmed cases: foundations, trends, and challenges. In: Modeling, Control and Drug Development for COVID-19 Outbreak Prevention, pp. 1023–1064 (2022)

    Google Scholar 

  11. Chen, Y., Kang, Y., Chen, Y., Wang, Z.: Probabilistic forecasting with temporal convolutional neural network. Neurocomputing 399, 491–501 (2020)

    Article  Google Scholar 

  12. Connor, J.T., Martin, R.D., Atlas, L.E.: Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 5(2), 240–254 (1994)

    Article  Google Scholar 

  13. Dave, E., Leonardo, A., Jeanice, M., Hanafiah, N.: Forecasting Indonesia exports using a hybrid model Arima-LSTM. Proc. Comput. Sci. 179, 480–487 (2021)

    Article  Google Scholar 

  14. De Livera, A.M., Hyndman, R.J., Snyder, R.D.: Forecasting time series with complex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 106(496), 1513–1527 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Egrioglu, E., Yolcu, U., Aladag, C.H., Bas, E.: Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Neural Process. Lett. 41(2), 249–258 (2015)

    Article  Google Scholar 

  16. Entorf, H.: Random walks with drifts: nonsense regression and spurious fixed-effect estimation. J. Economet. 80(2), 287–296 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Faraway, J., Chatfield, C.: Time series forecasting with neural networks: a comparative study using the air line data. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 47(2), 231–250 (1998)

    Google Scholar 

  18. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

    Article  MATH  Google Scholar 

  19. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Comput. 4(1), 1–58 (1992)

    Article  Google Scholar 

  20. Herzen, J., et al.: Darts: User-friendly modern machine learning for time series. J. Mach. Learn. Res. 23(124), 1–6 (2022)

    MathSciNet  Google Scholar 

  21. Hyndman, R., Koehler, A.B., Ord, J.K., Snyder, R.D.: Forecasting with Exponential Smoothing: the State Space Approach, 1st edn. Springer Science & Business Media, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71918-2

    Book  MATH  Google Scholar 

  22. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts (2018)

    Google Scholar 

  23. Hyndman, R.J., et al.: Package ‘forecast’ (2020). https://cran.r-project.org/web/packages/forecast/forecast

  24. Hyndman, R.J., Ullah, M.S.: Robust forecasting of mortality and fertility rates: a functional data approach. Comput. Statist. Data Anal. 51(10), 4942–4956 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Karmy, J.P., Maldonado, S.: Hierarchical time series forecasting via support vector regression in the European travel retail industry. Expert Syst. Appl. 137, 59–73 (2019)

    Article  Google Scholar 

  26. Khashei, M., Bijari, M.: An artificial neural network (p, d, q) model for time series forecasting. Expert Syst. Appl. 37(1), 479–489 (2010)

    Article  MATH  Google Scholar 

  27. Kodogiannis, V., Lolis, A.: Forecasting financial time series using neural network and fuzzy system-based techniques. Neural Comput. App. 11(2), 90–102 (2002)

    Article  Google Scholar 

  28. Koning, A.J., Franses, P.H., Hibon, M., Stekler, H.O.: The m3 competition: statistical tests of the results. Int. J. Forecast. 21(3), 397–409 (2005)

    Article  Google Scholar 

  29. Kourentzes, N.: nnfor: Time series forecasting with neural networks. R package version 0.9. 6 (2017)

    Google Scholar 

  30. Leoni, P.: Long-range out-of-sample properties of autoregressive neural networks. Neural Comput. 21(1), 1–8 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nochai, R., Nochai, T.: Arima model for forecasting oil palm price. In: Proceedings of the 2nd IMT-GT Regional Conference on Mathematics, Statistics and Applications, pp. 13–15 (2006)

    Google Scholar 

  32. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-beats: neural basis expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437 (2019)

  33. Panigrahi, S., Behera, H.S.: A hybrid ETS-ANN model for time series forecasting. Eng. Appl. Artif. Intell. 66, 49–59 (2017)

    Article  Google Scholar 

  34. Panja, M., Chakraborty, T., Kumar, U., Liu, N.: Epicasting: an ensemble wavelet neural network for forecasting epidemics. Neural Networks (2023)

    Google Scholar 

  35. Qin, Y., et al.: Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal. Appl. Energy 236, 262–272 (2019)

    Article  Google Scholar 

  36. Ray, A., Chakraborty, T., Ghosh, D.: Optimized ensemble deep learning framework for scalable forecasting of dynamics containing extreme events. Chaos Interdiscip. J. Nonlinear Sci. 31(11), 111105 (2021)

    Article  Google Scholar 

  37. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533 (1986)

    Article  MATH  Google Scholar 

  38. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–1191 (2020)

    Article  Google Scholar 

  39. Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V.K., Soman, K.: Stock price prediction using LSTM, RNN and CNN-sliding window model. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1643–1647. IEEE (2017)

    Google Scholar 

  40. Shahwan, T., Odening, M.: Forecasting agricultural commodity prices using hybrid neural networks. In: Chen, S.H., Wang, P.P., Kuo, T.W. (eds.) Computational Intelligence in Economics and Finance, pp. 63–74. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72821-4_3

  41. Vautard, R., Beekmann, M., Roux, J., Gombert, D.: Validation of a hybrid forecasting system for the ozone concentrations over the Paris area. Atmos. Environ. 35(14), 2449–2461 (2001)

    Article  Google Scholar 

  42. Vovk, V., Gammerman, A., Shafer, G.: Conformal prediction. In: Vovk, V., Gammerman, A., Shafer, G. (eds.) Algorithmic Learning in a Random World, pp. 17–51. Springer, Boston (2005). https://doi.org/10.1007/0-387-25061-1_2

    Chapter  MATH  Google Scholar 

  43. Wang, X., Hyndman, R.J., Li, F., Kang, Y.: Forecast combinations: an over 50-year review. arXiv preprint arXiv:2205.04216 (2022)

  44. Winters, P.R.: Forecasting sales by exponentially weighted moving averages. Manage. Sci. 6(3), 324–342 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu, N., Green, B., Ben, X., O’Banion, S.: Deep transformer models for time series forecasting: The influenza prevalence case. arXiv preprint arXiv:2001.08317 (2020)

  46. Xu, S., Chan, H.K., Zhang, T.: Forecasting the demand of the aviation industry using hybrid time series Sarima-SVR approach. Transp. Res. Part E Logist. Transp. Rev. 122, 169–180 (2019)

    Article  Google Scholar 

  47. Zhang, G.P.: Time series forecasting using a hybrid Arima and neural network model. Neurocomputing 50, 159–175 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhurima Panja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panja, M., Chakraborty, T., Kumar, U., Hadid, A. (2024). Probabilistic AutoRegressive Neural Networks for Accurate Long-Range Forecasting. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1967. Springer, Singapore. https://doi.org/10.1007/978-981-99-8178-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8178-6_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8177-9

  • Online ISBN: 978-981-99-8178-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics