Abstract
Joint extraction of entities and relations from unstructured text is an important task in information extraction and knowledge graph construction. However, most of the existing work only considers the information of the context in the sentence and the information of the entities, with little attention to the information of the possible relations between the entities, which may lead to the failure to extract valid triplets. In this paper, we propose a recurrent update representational method based on multi-head attention mechanism for relation extraction. We use a multi-head attention mechanism to interact the information between the relational representation and the sentence context representation, and make the feature information of both fully integrated by cyclically updating the representation. The model performs relation extraction after the representation is updated. Using this approach we are able to leverage the relationship information between entities for relational triple extraction. Our experimental results on four public datasets show that our approach is effective and the model outperforms all baseline models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fu, T.J., Li, P.H., Ma, W.Y.: Graphrel: modeling text as relational graphs for joint entity and relation extraction. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1409–1418 (2019)
Gardent, C., Shimorina, A., Narayan, S., Perez-Beltrachini, L.: Creating training corpora for NLG micro-planning. In: 55th Annual Meeting of the Association for Computational Linguistics (ACL) (2017)
Gupta, P., Schütze, H., Andrassy, B.: Table filling multi-task recurrent neural network for joint entity and relation extraction. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2537–2547 (2016)
Kingma, D.P.: A method for stochastic optimization. ArXiv Prepr (2014)
Lee, J., Toutanova, K.: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Ren, F., Zhang, L., Zhao, X., Yin, S., Liu, S., Li, B.: A simple but effective bidirectional framework for relational triple extraction. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 824–832 (2022)
Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS (LNAI), vol. 6323, pp. 148–163. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15939-8_10
Sui, D., Zeng, X., Chen, Y., Liu, K., Zhao, J.: Joint entity and relation extraction with set prediction networks. IEEE Trans. Neural Networks Learn. Syst. (2023)
Sun, K., Zhang, R., Mensah, S., Mao, Y., Liu, X.: Recurrent interaction network for jointly extracting entities and classifying relations. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 3722–3732 (2020)
Sun, K., Zhang, R., Mensah, S., Mao, Y., Liu, X.: Progressive multi-task learning with controlled information flow for joint entity and relation extraction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 13851–13859 (2021)
Takanobu, R., Zhang, T., Liu, J., Huang, M.: A hierarchical framework for relation extraction with reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7072–7079 (2019)
Tian, X., Jing, L., He, L., Liu, F.: Stereorel: relational triple extraction from a stereoscopic perspective. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4851–4861 (2021)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, Y., Yu, B., Zhang, Y., Liu, T., Zhu, H., Sun, L.: Tplinker: single-stage joint extraction of entities and relations through token pair linking. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1572–1582 (2020)
Wei, Z., Su, J., Wang, Y., Tian, Y., Chang, Y.: A novel cascade binary tagging framework for relational triple extraction. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1476–1488 (2020)
Ye, H., et al.: Contrastive triple extraction with generative transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 14257–14265 (2021)
Yu, B., et al.: Joint extraction of entities and relations based on a novel decomposition strategy. In: ECAI 2020, pp. 2282–2289. IOS Press (2020)
Zeng, X., He, S., Zeng, D., Liu, K., Liu, S., Zhao, J.: Learning the extraction order of multiple relational facts in a sentence with reinforcement learning. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 367–377 (2019)
Zeng, X., Zeng, D., He, S., Liu, K., Zhao, J.: Extracting relational facts by an end-to-end neural model with copy mechanism. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 506–514 (2018)
Zheng, S., Wang, F., Bao, H., Hao, Y., Zhou, P., Xu, B.: Joint extraction of entities and relations based on a novel tagging scheme. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1227–1236 (2017)
Acknowledgements
This work was supported in part by Natural Science Foundation of Shandong Province (No. ZR2022MF328 and No. ZR2019LZH014), and in part by National Natural Science Foundation of China (No. 62172265, No. 61602284 and No. 61602285).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Jia, S. et al. (2024). Recurrent Update Representation Based on Multi-head Attention Mechanism for Joint Entity and Relation Extraction. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1967. Springer, Singapore. https://doi.org/10.1007/978-981-99-8178-6_2
Download citation
DOI: https://doi.org/10.1007/978-981-99-8178-6_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8177-9
Online ISBN: 978-981-99-8178-6
eBook Packages: Computer ScienceComputer Science (R0)