[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Biological Tissue Sections Instance Segmentation Based on Active Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1964))

Included in the following conference series:

  • 714 Accesses

Abstract

Precisely identifying the locations of biological tissue sections on the wafer is the basis for microscopy imaging. However, the sections made of different biological tissues are different in shape. Therefore, the instance segmentation network trained in the existing dataset may not be suitable for detecting new sections, and the cost of making the new dataset is high. Therefore, this paper proposes an active learning algorithm for biological tissue section instance segmentation. The algorithm can achieve better results with only a few images for training when facing the new segmentation task of biological tissue sections. The algorithm adds a loss prediction module on the instance segmentation network, weights the uncertainty of the instance segmentation mask by the posterior category probability, and finally calculates the value of the sample. Then, we select the sample with the most significant value as the training set, so we can only label a small number of samples, and the network can achieve the expected performance. The algorithm is robust to different shapes of tissue sections and can be applied to various complex scenes to segment tissue sections automatically. Furthermore, experiments show that only labeling 30% samples of the whole training set makes the network achieve the expected performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harris, K.M., Perry, E., Bourne, J., et al.: Uniform serial sectioning for transmission electronmicroscopy. J. Neurosci. 26(47), 12101–12103 (2006)

    Article  Google Scholar 

  2. Hayworth, K.J., Morgan, J.L., Schalek, R., et al.: Imaging ATUM ultrathin section libraries with wafer mapper: a multi-scale approach to EM reconstruction of neural circuits. Front. Neural Circuits 8, 68 (2014)

    Article  Google Scholar 

  3. Shapson-Coe, A., Januszewski, M., Berger, D.R., et al.: A connectomic study of a petascale fragment of human cerebral cortex. BioRxiv (2021)

    Google Scholar 

  4. Li, P.H., Lindsey, L.F., Januszewski, M., et al.: Automated reconstruction of a serial-section EM drosophila brain with flood-filling networks and local realignment. Microsc. Micro Anal. 25(S2), 1364–1365 (2019)

    Article  Google Scholar 

  5. Vishwanathan, A., Ramirez, A.D., Wu, J., et al.: Modularity and neural coding from a brainstem synaptic wiring diagram. BioRxiv (2021)

    Google Scholar 

  6. Hildebrand, D.G.C., Cicconet, M., Torres, R.M., et al.: Whole-brain serial-section electron microscopy in larval zebrafish. Nature 545(7654), 345–349 (2017)

    Article  Google Scholar 

  7. Yin, W., Brittain, D., Borseth, J., et al.: A petascale automated imaging pipeline for mapping neuronal circuits with high-throughput transmission electron microscopy. Nat. Commun. 11(1), 1–12 (2020)

    Article  Google Scholar 

  8. Larsen, N.Y., Li, X., Tan, X., et al.: Cellular 3D-reconstruction and analysis in the human cerebral cortex using automatic serial sections. Commun. Biol. 4(1), 1–15 (2021)

    Article  Google Scholar 

  9. Sun, G., Wang, Z., Li, G., Han, H.: Robust frequency-aware instance segmentation for serial tissue sections. In: Wallraven, C., Liu, Q., Nagahara, H. (eds.) ACPR 2021. LNCS, vol. 13188, pp. 379–389. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02375-0_28

  10. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 93–102 (2019)

    Google Scholar 

  11. Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5972–5981 (2019)

    Google Scholar 

  12. Tran, T., Do, T.T., Reid, I., et al.: Bayesian generative active deep learning. In: International Conference on Machine Learning, pp. 6295–6304. PMLR (2019)

    Google Scholar 

  13. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning. In: Machine Learning Proceedings 1994, pp. 148–156. Elsevier (1994)

    Google Scholar 

  14. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994, pp. 3–12. Springer, London (1994). https://doi.org/10.1007/978-1-4471-2099-5_1

  15. Roth, D., Small, K.: Margin-based active learning for structured output spaces. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS, vol. 4212, pp. 413–424. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_40

  16. Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2372–2379. IEEE (2009)

    Google Scholar 

  17. Luo, W., Schwing, A., Urtasun, R.: Latent structured active learning. In: Advances in Neural Information Processing Systems, 26 (2013)

    Google Scholar 

  18. Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pp. 1070–1079 (2008)

    Google Scholar 

  19. Settles, B., Craven, M., Ray, S.: Multiple-instance active learning. In: Advances in Neural Information Processing Systems, 20 (2007)

    Google Scholar 

  20. Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 79 (2004)

    Google Scholar 

  21. Elhamifar, E., Sapiro, G., Yang, A., et al.: A convex optimization framework for active learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 209–216 (2013)

    Google Scholar 

  22. Yang, B., Bender, G., Le, Q.V., et al.: CondConv: conditionally parameterized convolutions for efficient inference. In: Advances in Neural Information Processing Systems, 32 (2019)

    Google Scholar 

  23. Mac Aodha, O., Campbell, N.D., Kautz, J., et al.: Hierarchical subquery evaluation for active learning on a graph. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 564–571 (2014)

    Google Scholar 

  24. Hasan, M., Roy-Chowdhury, A.K.: Context aware active learning of activity recognition models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4543–4551 (2015)

    Google Scholar 

  25. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. arXiv preprint arXiv:1708.00489 (2017)

  26. Tang, Y.P., Huang, S.J.: Self-paced active learning: query the right thing at the right time. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5117–5124 (2019)

    Google Scholar 

  27. Beluch, W.H., Genewein, T., Nürnberger, A., et al.: The power of ensembles for active learning in image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9368–9377 (2018)

    Google Scholar 

  28. Lin, L., Wang, K., Meng, D., et al.: Active self-paced learning for cost-effective and progressive face identification. IEEE Trans. Pattern Anal. Mach. Intell. 40(1), 7–19 (2017)

    Article  Google Scholar 

  29. Liu, Z.Y., Huang, S.J.: Active sampling for open-set classification without initial annotation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4416–4423 (2019)

    Google Scholar 

  30. Liu, Z.Y., Li, S.Y., Chen, S., et al.: Uncertainty aware graph Gaussian process for semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4957–4964 (2020)

    Google Scholar 

  31. Aghdam, H.H., Gonzalez-Garcia, A., van de Weijer, J., et al.: Active learning for deep detection neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3672–3680 (2019)

    Google Scholar 

  32. Zhang, B., Li, L., Yang, S., et al.: State-relabeling adversarial active learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8756–8765 (2020)

    Google Scholar 

  33. Wada, K.: Labelme: Image Polygonal Annotation with Python. https://github.com/wkentaro/labelme. https://doi.org/10.5281/zenodo.5711226

  34. Chen, K., Wang, J., Pang, J., et al.: Mmdetection: Open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  35. Huang, Z., Huang, L., Gong, Y., et al.: Mask scoring R-CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6409–6418 (2019)

    Google Scholar 

  36. He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

Download references

Funding

This work has been supported by the Scientific research instrument and equipment development project of Chinese Academy of Sciences [YJKYYQ20210022 to H.H.].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Chen or Hua Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

lv, Y., Jia, H., Chen, H., Chen, X., Sun, G., Han, H. (2024). Biological Tissue Sections Instance Segmentation Based on Active Learning. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1964. Springer, Singapore. https://doi.org/10.1007/978-981-99-8141-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8141-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8140-3

  • Online ISBN: 978-981-99-8141-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics