Abstract
Precisely identifying the locations of biological tissue sections on the wafer is the basis for microscopy imaging. However, the sections made of different biological tissues are different in shape. Therefore, the instance segmentation network trained in the existing dataset may not be suitable for detecting new sections, and the cost of making the new dataset is high. Therefore, this paper proposes an active learning algorithm for biological tissue section instance segmentation. The algorithm can achieve better results with only a few images for training when facing the new segmentation task of biological tissue sections. The algorithm adds a loss prediction module on the instance segmentation network, weights the uncertainty of the instance segmentation mask by the posterior category probability, and finally calculates the value of the sample. Then, we select the sample with the most significant value as the training set, so we can only label a small number of samples, and the network can achieve the expected performance. The algorithm is robust to different shapes of tissue sections and can be applied to various complex scenes to segment tissue sections automatically. Furthermore, experiments show that only labeling 30% samples of the whole training set makes the network achieve the expected performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Harris, K.M., Perry, E., Bourne, J., et al.: Uniform serial sectioning for transmission electronmicroscopy. J. Neurosci. 26(47), 12101–12103 (2006)
Hayworth, K.J., Morgan, J.L., Schalek, R., et al.: Imaging ATUM ultrathin section libraries with wafer mapper: a multi-scale approach to EM reconstruction of neural circuits. Front. Neural Circuits 8, 68 (2014)
Shapson-Coe, A., Januszewski, M., Berger, D.R., et al.: A connectomic study of a petascale fragment of human cerebral cortex. BioRxiv (2021)
Li, P.H., Lindsey, L.F., Januszewski, M., et al.: Automated reconstruction of a serial-section EM drosophila brain with flood-filling networks and local realignment. Microsc. Micro Anal. 25(S2), 1364–1365 (2019)
Vishwanathan, A., Ramirez, A.D., Wu, J., et al.: Modularity and neural coding from a brainstem synaptic wiring diagram. BioRxiv (2021)
Hildebrand, D.G.C., Cicconet, M., Torres, R.M., et al.: Whole-brain serial-section electron microscopy in larval zebrafish. Nature 545(7654), 345–349 (2017)
Yin, W., Brittain, D., Borseth, J., et al.: A petascale automated imaging pipeline for mapping neuronal circuits with high-throughput transmission electron microscopy. Nat. Commun. 11(1), 1–12 (2020)
Larsen, N.Y., Li, X., Tan, X., et al.: Cellular 3D-reconstruction and analysis in the human cerebral cortex using automatic serial sections. Commun. Biol. 4(1), 1–15 (2021)
Sun, G., Wang, Z., Li, G., Han, H.: Robust frequency-aware instance segmentation for serial tissue sections. In: Wallraven, C., Liu, Q., Nagahara, H. (eds.) ACPR 2021. LNCS, vol. 13188, pp. 379–389. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02375-0_28
Yoo, D., Kweon, I.S.: Learning loss for active learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 93–102 (2019)
Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5972–5981 (2019)
Tran, T., Do, T.T., Reid, I., et al.: Bayesian generative active deep learning. In: International Conference on Machine Learning, pp. 6295–6304. PMLR (2019)
Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning. In: Machine Learning Proceedings 1994, pp. 148–156. Elsevier (1994)
Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994, pp. 3–12. Springer, London (1994). https://doi.org/10.1007/978-1-4471-2099-5_1
Roth, D., Small, K.: Margin-based active learning for structured output spaces. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS, vol. 4212, pp. 413–424. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_40
Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2372–2379. IEEE (2009)
Luo, W., Schwing, A., Urtasun, R.: Latent structured active learning. In: Advances in Neural Information Processing Systems, 26 (2013)
Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pp. 1070–1079 (2008)
Settles, B., Craven, M., Ray, S.: Multiple-instance active learning. In: Advances in Neural Information Processing Systems, 20 (2007)
Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 79 (2004)
Elhamifar, E., Sapiro, G., Yang, A., et al.: A convex optimization framework for active learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 209–216 (2013)
Yang, B., Bender, G., Le, Q.V., et al.: CondConv: conditionally parameterized convolutions for efficient inference. In: Advances in Neural Information Processing Systems, 32 (2019)
Mac Aodha, O., Campbell, N.D., Kautz, J., et al.: Hierarchical subquery evaluation for active learning on a graph. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 564–571 (2014)
Hasan, M., Roy-Chowdhury, A.K.: Context aware active learning of activity recognition models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4543–4551 (2015)
Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. arXiv preprint arXiv:1708.00489 (2017)
Tang, Y.P., Huang, S.J.: Self-paced active learning: query the right thing at the right time. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5117–5124 (2019)
Beluch, W.H., Genewein, T., Nürnberger, A., et al.: The power of ensembles for active learning in image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9368–9377 (2018)
Lin, L., Wang, K., Meng, D., et al.: Active self-paced learning for cost-effective and progressive face identification. IEEE Trans. Pattern Anal. Mach. Intell. 40(1), 7–19 (2017)
Liu, Z.Y., Huang, S.J.: Active sampling for open-set classification without initial annotation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4416–4423 (2019)
Liu, Z.Y., Li, S.Y., Chen, S., et al.: Uncertainty aware graph Gaussian process for semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4957–4964 (2020)
Aghdam, H.H., Gonzalez-Garcia, A., van de Weijer, J., et al.: Active learning for deep detection neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3672–3680 (2019)
Zhang, B., Li, L., Yang, S., et al.: State-relabeling adversarial active learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8756–8765 (2020)
Wada, K.: Labelme: Image Polygonal Annotation with Python. https://github.com/wkentaro/labelme. https://doi.org/10.5281/zenodo.5711226
Chen, K., Wang, J., Pang, J., et al.: Mmdetection: Open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)
Huang, Z., Huang, L., Gong, Y., et al.: Mask scoring R-CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6409–6418 (2019)
He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Funding
This work has been supported by the Scientific research instrument and equipment development project of Chinese Academy of Sciences [YJKYYQ20210022 to H.H.].
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
lv, Y., Jia, H., Chen, H., Chen, X., Sun, G., Han, H. (2024). Biological Tissue Sections Instance Segmentation Based on Active Learning. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1964. Springer, Singapore. https://doi.org/10.1007/978-981-99-8141-0_2
Download citation
DOI: https://doi.org/10.1007/978-981-99-8141-0_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8140-3
Online ISBN: 978-981-99-8141-0
eBook Packages: Computer ScienceComputer Science (R0)