[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Lightweight Text Classification Model Based on Label Embedding Attentive Mechanism

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1966))

Included in the following conference series:

  • 727 Accesses

Abstract

This paper presents a lightweight model based on the self-attention mechanism for text classification tasks. In our model, we incorporate auxiliary information of the label through the label embedding method, enabling the model to capture the contextual language variations of the same word. Furthermore, we address the issue of misclassification of similar texts by introducing the contrastive loss function, in conjunction with the traditional cross-entropy loss function. Experimental evaluations are conducted on multiple datasets, comparing our model against others with similar parameter scales, thus demonstrating the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1425–1438 (2016). https://doi.org/10.1109/TPAMI.2015.2487986

    Article  Google Scholar 

  2. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling (2018)

    Google Scholar 

  3. Johnson, R., Zhang, T.: Deep pyramid convolutional neural networks for text categorization. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 562–570. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/P17-1052

  4. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751. Association for Computational Linguistics, Doha, Qatar (2014). https://doi.org/10.3115/v1/D14-1181

  5. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29. no. 1 (2015). https://doi.org/10.1609/aaai.v29i1.9513

  6. Liu, C.Z., Sheng, Y.x., Wei, Z.Q., Yang, Y.Q.: Research of text classification based on improved TF-IDF algorithm. In: 2018 IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE), pp. 218–222 (2018). https://doi.org/10.1109/IRCE.2018.8492945

  7. Liu, M., Liu, L., Cao, J., Du, Q.: Co-attention network with label embedding for text classification. Neurocomputing 471, 61–69 (2022). https://doi.org/10.1016/j.neucom.2021.10.099

    Article  Google Scholar 

  8. Musgrave, K., Belongie, S., Lim, S.-N.: A metric learning reality check. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 681–699. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_41

    Chapter  Google Scholar 

  9. Peng, S., et al.: A survey on deep learning for textual emotion analysis in social networks. Digital Commun. Netw. 8(5), 745–762 (2022). https://doi.org/10.1016/j.dcan.2021.10.003

    Article  MathSciNet  Google Scholar 

  10. Schick, T., Schütze, H.: Exploiting cloze-questions for few-shot text classification and natural language inference. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 255–269. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.eacl-main.20. https://aclanthology.org/2021.eacl-main.20

  11. Song, P., Geng, C., Li, Z.: Research on text classification based on convolutional neural network. In: 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA), pp. 229–232. IEEE, Xi’an, China (2019). https://doi.org/10.1109/ICCNEA.2019.00052

  12. Tan, C., Ren, Y., Wang, C.: An adaptive convolution with label embedding for text classification. Appl. Intell. 53(1), 804–812 (2023). https://doi.org/10.1007/s10489-021-02702-x

    Article  Google Scholar 

  13. Tian, H., Wu, L.: Microblog emotional analysis based on TF-IWF weighted word2vec model. In: 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), pp. 893–896. IEEE, Beijing, China (2018). https://doi.org/10.1109/ICSESS.2018.8663837

  14. Tu Zhenchao, M.J.: Item categorization algorithm based on improved text representation. Data Anal. Knowl. Discovery 6, 34–43 (2022). https://doi.org/10.11925/infotech.2096-3467.2021.0958

    Article  Google Scholar 

  15. Vaswani, A., et al.: Attention is all you need (2017)

    Google Scholar 

  16. Wang, G., et al.: Joint embedding of words and labels for text classification (2018)

    Google Scholar 

  17. Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 606–615. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1058

  18. Xu Yuemei, Fan Zuwei, C.H.: A multi-task text classification model based on label embedding of attention mechanism. Data Anal. Knowl. Discovery, 6(2/3) pp. 105–116 (2022). https://doi.org/10.11925/infotech.2096-3467.2021.0912

  19. XUAN, W.: Logistics service quality sentiment analysis with deeper attention lstm model with aspect embedding. Tehnicki vjesnik - Technical Gazette 30(2), 634–641 (2023). https://doi.org/10.17559/TV-20221018031450

  20. Yan, C., Liu, J., Liu, W., Liu, X.: Research on public opinion sentiment classification based on attention parallel dual-channel deep learning hybrid model. Eng. Appl. Artif. Intell. 116, 105448 (2022). https://doi.org/10.1016/j.engappai.2022.105448

    Article  Google Scholar 

  21. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. CoRR abs/1809.05679 (2018). http://arxiv.org/abs/1809.05679

  22. Zhao, W., Zhu, L., Wang, M., Zhang, X., Zhang, J.: WTL-CNN: a news text classification method of convolutional neural network based on weighted word embedding. Connect. Sci. 34(1), 2291–2312 (2022). https://doi.org/10.1080/09540091.2022.2117274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, F., Chen, G., Yi, J.W., Luo, G. (2024). A Lightweight Text Classification Model Based on Label Embedding Attentive Mechanism. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1966. Springer, Singapore. https://doi.org/10.1007/978-981-99-8148-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8148-9_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8147-2

  • Online ISBN: 978-981-99-8148-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics