[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Novel Iterative Fusion Multi-task Learning Framework for Solving Dense Prediction

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Dense prediction tasks are hot topics in computer vision that aim to predict each input image pixel, such as Semantic Segmentation, Monocular Depth Estimation, Edge Estimation, etc. With advanced deep learning, many dense prediction tasks have been greatly improved. Multi-task learning is one of the top research lines to boost task performance further. Properly designed multi-task model architectures have better performance and minor memory usage than single-task models. This paper proposes a novel Multi-task Learning (MTL) framework with a Task Pair Interaction Module (TPIM) to tackle several dense prediction tasks. Different from most widely used MTL structures which share features on some specific layer and branch to task-specific layer, the output task-specific features are remixed via a TPIM to get more shared features in this paper. Due to joint learning, tasks are mutually supervised and provide rich shared information to each other for improving final results. The TPIM includes a novel Cross-task Interaction Block (CIB) which comprises two attention mechanisms, self-attention and pixel-wise global attention. In contrast with the commonly used global attention mechanism, an Iterative Fusion Block (IFB) is introduced to effectively fuse affinity information between task pairs. Extensive experiments on two benchmark datasets (NYUD-v2 and PASCAL) demonstrate that our proposal is effective in comparison to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bilen, H., Vedaldi, A.: Integrated perception with recurrent multi-task neural networks. Advances in neural information processing systems 29 (2016)

    Google Scholar 

  2. Brüggemann, D., Kanakis, M., Obukhov, A., Georgoulis, S., Van Gool, L.: Exploring relational context for multi-task dense prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15869–15878 (2021)

    Google Scholar 

  3. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  4. Chen, B., Guan, W., Li, P., Ikeda, N., Hirasawa, K., Lu, H.: Residual multi-task learning for facial landmark localization and expression recognition. Pattern Recogn. 115, 107893 (2021)

    Article  Google Scholar 

  5. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  6. Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks. In: International Conference on Machine Learning, pp. 794–803. PMLR (2018)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  9. Gao, Y., Ma, J., Zhao, M., Liu, W., Yuille, A.L.: Nddr-cnn: Layerwise feature fusing in multi-task cnns by neural discriminative dimensionality reduction. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 3205–3214 (2019)

    Google Scholar 

  10. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  11. Kokkinos, I.: Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6129–6138 (2017)

    Google Scholar 

  12. Lee, S., et al.: Vpgnet: vanishing point guided network for lane and road marking detection and recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1947–1955 (2017)

    Google Scholar 

  13. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1871–1880 (2019)

    Google Scholar 

  14. Lopes, I., Vu, T.H., de Charette, R.: Cross-task attention mechanism for dense multi-task learning. arXiv preprint arXiv:2206.08927 (2022)

  15. Maninis, K.K., Radosavovic, I., Kokkinos, I.: Attentive single-tasking of multiple tasks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1851–1860 (2019)

    Google Scholar 

  16. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3994–4003 (2016)

    Google Scholar 

  17. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019)

    Google Scholar 

  18. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098 (2017)

  19. Ruder, S., Bingel, J., Augenstein, I., Søgaard, A.: Latent multi-task architecture learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4822–4829 (2019)

    Google Scholar 

  20. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  21. Vandenhende, S., Georgoulis, S., Van Gool, L.: MTI-Net: multi-scale task interaction networks for multi-task learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 527–543. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_31

    Chapter  Google Scholar 

  22. Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., Van Gool, L.: Multi-task learning for dense prediction tasks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  23. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  24. Xu, D., Ouyang, W., Wang, X., Sebe, N.: Pad-net: multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 675–684 (2018)

    Google Scholar 

  25. Zhang, Z., Cui, Z., Xu, C., Jie, Z., Li, X., Yang, J.: Joint task-recursive learning for semantic segmentation and depth estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 238–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_15

    Chapter  Google Scholar 

  26. Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., Yang, J.: Pattern-affinitive propagation across depth, surface normal and semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4106–4115 (2019)

    Google Scholar 

  27. Zhou, L., et al.: Pattern-structure diffusion for multi-task learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4514–4523 (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 62176161, and the Scientific Research and Development Foundations of Shenzhen under Grant JCYJ20220818100005011

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Luo, J. (2024). A Novel Iterative Fusion Multi-task Learning Framework for Solving Dense Prediction. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1961. Springer, Singapore. https://doi.org/10.1007/978-981-99-8126-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8126-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8125-0

  • Online ISBN: 978-981-99-8126-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics