Abstract
Citation count is commonly used as a straightforward metric for measuring the impact of a paper. However, since all citations are treated equally, citation count does not accurately capture the true influence of a particular cited paper on the citing paper. To accurately measure the individual impact of cited papers, it is required to identify those that have a high influence on a citing paper. This paper proposes a method to identify the influential citations using the text of citation contexts, specifically the citing sentences. Citing sentences contain the descriptions of the cited papers and the relationship between the citing paper and each cited paper. The proposed method extracts the descriptions of cited papers from the citing sentences and utilizes them to identify influential references. Experimental results have shown the benefits of using the extracted description of each cited paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, pp. 3615–3620 (2019)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(1), 993–1022 (2003)
de Andrade, C.M.V., Gonçalves, M.A.: Combining representations for effective citation classification. In: Proceedings of the 8th International Workshop on Mining Scientific Publications, pp. 54–58 (2020)
Forney, G.: The Viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)
Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)
Hutto, C., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings of the 8th International AAAI Conference on Web and Social Media, pp. 216–225 (2014)
Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. In: Proceedings of the 15th Conference on European Chapter of the Association for Computational Linguistics, pp. 427–431 (2017)
Kunnath, S.N., Pride, D., Gyawali, B., Knoth, P.: Overview of the 2020 WOSP 3C citation context classification task. In: Proceedings of the 8th International Workshop on Mining Scientific Publications, pp. 75–83 (2020)
Kunnath, S.N., Pride, D., Herrmannova, D., Knoth, P.: Overview of the 2021 SDP 3C citation context classification shared task. In: Proceedings of the 2nd Workshop on Scholarly Document Processing, pp. 150–158 (2021)
Maheshwari, H., Singh, B., Varma, V.: SciBERT sentence representation for citation context classification. In: Proceedings of the 2nd Workshop on Scholarly Document Processing, pp. 130–133 (2021)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Workshop Track Proceedings of the 1st International Conference on Learning Representations (2013)
Mishra, S., Mishra, S.: Scubed at 3C task B - a simple baseline for citation context influence classification. In: Proceedings of the 8th International Workshop on Mining Scientific Publications, pp. 65–70 (2020)
Nakayama, H., Kubo, T., Kamura, J., Taniguchi, Y., Liang, X.: doccano: text annotation tool for human (2018). https://github.com/doccano/doccano
Paszke, A. et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035 (2019)
Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pp. 1532–1543 (2014)
Premjith, B., Isha, I.S., Kumar, K.S., Karthikeyan, L., Soman, K.P.: Amrita_CEN_NLP@SDP2021 task A and B. In: Proceedings of the 2nd Workshop on Scholarly Document Processing, pp. 146–149 (2021)
Premjith, B., Soman, K.P.: Amrita_CEN_NLP @ WOSP 3C citation context classification task. In: Proceedings of the 8th International Workshop on Mining Scientific Publications, pp. 71–74 (2020)
Pride, D., Knoth, P.: Incidental or influential? - Challenges in automatically detecting citation importance using publication full texts. In: Proceedings of the 21st International Conference on Theory and Practice of Digital Libraries, pp. 572–578 (2017)
Su, X., Prasad, A., Kan, M.Y., Sugiyama, K.: Neural multi-task learning for citation function and provenance. In: Proceedings of the 2019 ACM/IEEE Joint Conference on Digital Libraries, pp. 394–395 (2019)
Taşkın, Z., Al, U.: A content-based citation analysis study based on text categorization. Scientometrics 114(1), 335–357 (2017). https://doi.org/10.1007/s11192-017-2560-2
Thomas, W. et al.: Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pp. 38–45 (2020)
Valenzuela, M., Ha, V.A., Etzioni, O.: Identifying meaningful citations. In: AAAI Workshop: Scholarly Big Data, pp. 21–26 (2015)
Varanasi, K.K., Ghosal, T., Tiwary, P., Singh, M.: IITP-CUNI@3C: supervised approaches for citation classification (task A) and citation significance detection (task B). In: Proceedings of the 2nd Workshop on Scholarly Document Processing, pp. 140–145 (2021)
Acknowledgements
This work was partially supported by the Grant-in-Aid for Challenging Research (Exploratory) (No. 23K18506) of JSPS and by JST SPRING, Grant Number JPMJSP2125. The computation was carried out on supercomputer “Flow” at Information Technology Center, Nagoya University.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ikoma, T., Matsubara, S. (2023). Identifying Influential References in Scholarly Papers Using Citation Contexts. In: Goh, D.H., Chen, SJ., Tuarob, S. (eds) Leveraging Generative Intelligence in Digital Libraries: Towards Human-Machine Collaboration. ICADL 2023. Lecture Notes in Computer Science, vol 14458. Springer, Singapore. https://doi.org/10.1007/978-981-99-8088-8_13
Download citation
DOI: https://doi.org/10.1007/978-981-99-8088-8_13
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8087-1
Online ISBN: 978-981-99-8088-8
eBook Packages: Computer ScienceComputer Science (R0)