[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Propheter: Prophetic Teacher Guided Long-Tailed Distribution Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14450))

Included in the following conference series:

Abstract

The problem of deep long-tailed learning, a prevalent challenge in the realm of generic visual recognition, persists in a multitude of real-world applications. To tackle the heavily-skewed dataset issue in long-tailed classification, prior efforts have sought to augment existing deep models with the elaborate class-balancing strategies, such as class rebalancing, data augmentation, and module improvement. Despite the encouraging performance, the limited class knowledge of the tailed classes in the training dataset still bottlenecks the performance of the existing deep models. In this paper, we propose an innovative long-tailed learning paradigm that breaks the bottleneck by guiding the learning of deep networks with external prior knowledge. This is specifically achieved by devising an elaborated “prophetic” teacher, termed as “Propheter”, that aims to learn the potential class distributions. The target long-tailed prediction model is then optimized under the instruction of the well-trained “Propheter”, such that the distributions of different classes are as distinguishable as possible from each other. Experiments on eight long-tailed benchmarks across three architectures demonstrate that the proposed prophetic paradigm acts as a promising solution to the challenge of limited class knowledge in long-tailed datasets. The developed code is publicly available at https://github.com/tcmyxc/propheter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, Y., Long, M., Wang, J., Zhu, H., Wen, Q.: Deep quantization network for efficient image retrieval. In: AAAI (2016)

    Google Scholar 

  2. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique.J. Artif. Intell. Res. 16, 321–357 (2002)

    Google Scholar 

  3. Chu, P., Bian, X., Liu, S., Ling, H.: Feature space augmentation for long-tailed data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 694–710. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_41

    Chapter  Google Scholar 

  4. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: CVPR (2019)

    Google Scholar 

  5. Feng, C., Zhong, Y., Huang, W.: Exploring classification equilibrium in long-tailed object detection. In: ICCV (2021)

    Google Scholar 

  6. Feng, M., et al.: Exploring hierarchical spatial layout cues for 3D point cloud based scene graph prediction. IEEE Trans. Multimedia 99, 1–13 (2023)

    Google Scholar 

  7. Feng, Z., Jing, Y., Zhang, C., Xu, R., Lei, J., Song, M.: Graph-based color gamut mapping using neighbor metric. In: ICME (2017)

    Google Scholar 

  8. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS Deep Learning and Representation Learning Workshop (2015)

    Google Scholar 

  9. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: CVPR (2019)

    Google Scholar 

  10. Iscen, A., Araujo, A., Gong, B., Schmid, C.: Class-balanced distillation for long-tailed visual recognition. In: BMVC (2021)

    Google Scholar 

  11. Jamal, M.A., Brown, M., Yang, M.H., Wang, L., Gong, B.: Rethinking class-balanced methods for long-tailed visual recognition from a domain adaptation perspective. In: CVPR (2020)

    Google Scholar 

  12. Jing, Y., Yuan, C., Ju, L., Yang, Y., Wang, X., Tao, D.: Deep graph reprogramming. In: CVPR (2023)

    Google Scholar 

  13. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: ICLR (2019)

    Google Scholar 

  14. Liang, H., et al.: Training interpretable convolutional neural networks by differentiating class-specific filters. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 622–638. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_37

    Chapter  Google Scholar 

  15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  16. Liu, S., Garrepalli, R., Dietterich, T.G., Fern, A., Hendrycks, D.: Open category detection with PAC guarantees. In: ICML (2018)

    Google Scholar 

  17. Liu, S., Wang, K., Yang, X., Ye, J., Wang, X.: Dataset distillation via factorization. NeurIPS (2022)

    Google Scholar 

  18. Liu, S., Ye, J., Yu, R., Wang, X.: Slimmable dataset condensation. In: CVPR (2023)

    Google Scholar 

  19. Luo, B., et al.: Learning deep hierarchical features with spatial regularization for one-class facial expression recognition. In: AAAI (2023)

    Google Scholar 

  20. Mengke Li, Yiu-ming Cheung, Y.L.: Long-tailed visual recognition via gaussian clouded logit adjustment. In: CVPR, pp. 6929–6938 (2022)

    Google Scholar 

  21. Ren, J., et al.: Balanced meta-softmax for long-tailed visual recognition. In: NeurIPS (2020)

    Google Scholar 

  22. Su, X., et al.: Prioritized architecture sampling with monto-carlo tree search. In: CVPR (2021)

    Google Scholar 

  23. Su, X., et al.: Locally free weight sharing for network width search. arXiv preprint arXiv:2102.05258 (2021)

  24. Su, X., You, S., Wang, F., Qian, C., Zhang, C., Xu, C.: BCNet: searching for network width with bilaterally coupled network. In: CVPR (2021)

    Google Scholar 

  25. Su, X., et al.: ViTAS: vision transformer architecture search. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol. 13681. Springer, Cham. https://doi.org/10.1007/978-3-031-19803-8_9

  26. Xi, H.: Data-driven optimization technologies for MaaS. In: Big Data and Mobility as a Service (2022)

    Google Scholar 

  27. Xi, H., Liu, W., Waller, S.T., Hensher, D.A., Kilby, P., Rey, D.: Incentive-compatible mechanisms for online resource allocation in mobility-as-a-service systems. Trans. Res. Part B Methodol. 170, 119-147 (2023)

    Google Scholar 

  28. Xi, H., Tang, Y., Waller, S.T., Shalaby, A.: Modeling, equilibrium, and demand management for mobility and delivery services in mobility-as-a-service ecosystems. Comput-Aided Civ. Infrastruct. Eng. 38(11), 1403–1423 (2023)

    Google Scholar 

  29. Xi, H., Zhang, Y., Zhang, Y.: Detection of safety features of drivers based on image processing. In: 18th COTA International Conference of Transportation Professionals (2018)

    Google Scholar 

  30. Yang, X., Ye, J., Wang, X.: Factorizing knowledge in neural networks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol. 13694. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19830-4_5

  31. Yang, X., Zhou, D., Feng, J., Wang, X.: Diffusion probabilistic model made slim. In: CVPR (2023)

    Google Scholar 

  32. Yang, X., Zhou, D., Liu, S., Ye, J., Wang, X.: Deep model reassembly. NeurIPS (2022)

    Google Scholar 

  33. Yu, R., Liu, S., Wang, X.: Dataset distillation: a comprehensive review. arXiv preprint arXiv:2301.07014 (2023)

  34. Zhai, W., Cao, Y., Zhang, J., Zha, Z.J.: Exploring figure-ground assignment mechanism in perceptual organization. NeurIPS (2022)

    Google Scholar 

  35. Zhai, W., Luo, H., Zhang, J., Cao, Y., Tao, D.: One-shot object affordance detection in the wild. Int. J. Comput. Vis. 130, 2472–2500 (2022). https://doi.org/10.1007/s11263-022-01642-4

  36. Zhao, H., Bian, W., Yuan, B., Tao, D.: Collaborative learning of depth estimation, visual odometry and camera relocalization from monocular videos. In: IJCAI (2020)

    Google Scholar 

  37. Zhao, H., Zhang, J., Zhang, S., Tao, D.: JPerceiver: joint perception network for depth, pose and layout estimation in driving scenes. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol. 13698. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19839-7_41

  38. Zhao, H., Zhang, Q., Zhao, S., Zhang, J., Tao, D.: BEVSimDet: simulated multi-modal distillation in bird’s-eye view for multi-view 3D object detection. arXiv preprint arXiv:2303.16818 (2023)

  39. Zhu, J., Luo, B., Yang, T., Wang, Z., Zhao, X., Gao, Y.: Knowledge conditioned variational learning for one-class facial expression recognition. IEEE Trans. Image Process. 32, 4010–4023 (2023)

    Google Scholar 

Download references

Acknowledgements

This work is funded by National Key Research and Development Project (Grant No: 2022YFB2703100), National Natural Science Foundation of China (61976186, U20B2066), Zhejiang Province High-Level Talents Special Support Program “Leading Talent of Technological Innovation of Ten-Thousands Talents Program” (No. 2022R52046), Ningbo Natural Science Foundation (2022J182), Basic Public Welfare Research Project of Zhejiang Province (LGF21F020020), and the Fundamental Research Funds for the Central Universities (2021FZZX001-23, 226-2023-00048). This work is partially supported by the National Natural Science Foundation of China (Grant No. 62106235), the Exploratory Research Project of Zhejiang Lab (2022PG0AN01), and the Zhejiang Provincial Natural Science Foundation of China (LQ21F020003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lechao Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, W. et al. (2024). Propheter: Prophetic Teacher Guided Long-Tailed Distribution Learning. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14450. Springer, Singapore. https://doi.org/10.1007/978-981-99-8070-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8070-3_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8069-7

  • Online ISBN: 978-981-99-8070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics