[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

IEEG-CT: A CNN and Transformer Based Method for Intracranial EEG Signal Classification

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14449))

Included in the following conference series:

  • 1004 Accesses

Abstract

Intracranial electroencephalography (iEEG) is of great importance for the preoperative evaluation of drug-resistant epilepsy. Automatic classification of iEEG signals can speed up the process of epilepsy diagnosis. Existing deep learning-based approaches for iEEG signal classification usually rely on convolutional neural network (CNN) and long short-term memory network. However, these approaches have limitations in terms of classification accuracy. In this study, we propose a CNN and Transformer based method, which is named as IEEG-CT, for iEEG signal classification. Firstly, IEEG-CT utilizes deep one-dimensional CNN to extract the critical local features from the raw iEEG signals. Secondly, IEEG-CT combines a Transformer encoder, which employs a multi-head attention mechanism to capture long-range global information among the extracted features. In particular, we leverage a causal convolution multi-head attention instead of the standard Transformer block to efficiently capture the temporal dependencies within the input features. Finally, the obtained global features by the Transformer encoder are employed for the classification. We assess the performance of IEEG-CT on two publicly available multicenter iEEG datasets. According to the experimental results, IEEG-CT surpasses state-of-the-art techniques in terms of several evaluation metrics, i.e., accuracy, AUROC, and AUPRC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thijs, R.D., Surges, R., O’Brien, T.J., Sander, J.W.: Epilepsy in adults. Lancet 393(10172), 689–701 (2019)

    Article  Google Scholar 

  2. Wiebe, S., Jette, N.: Pharmacoresistance and the role of surgery in difficult to treat epilepsy. Nat. Rev. Neurol. 8(12), 669–677 (2012)

    Article  Google Scholar 

  3. Wang, Y., Yan, J., Wen, J., Yu, T., Li, X.: An intracranial electroencephalography (iEEG) brain function mapping tool with an application to epilepsy surgery evaluation. Front. Neuroinform. 10, 15 (2016)

    Article  Google Scholar 

  4. Urrestarazu, E., Jirsch, J.D., LeVan, P., Hall, J.: High-frequency intracerebral EEG activity (100–500 Hz) following interictal spikes. Epilepsia 47(9), 1465–1476 (2006)

    Article  Google Scholar 

  5. Nejedly, P., Cimbalnik, J., Klimes, P., Plesinger, F., Halamek, J., et al.: Intracerebral EEG artifact identification using convolutional neural networks. Neuroinformatics 17, 225–234 (2019)

    Article  Google Scholar 

  6. Sui, L., Zhao, X., Zhao, Q., Tanaka, T., Cao, J.: Localization of epileptic foci by using convolutional neural network based on iEEG. In: MacIntyre, J., Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI 2019. IAICT, vol. 559, pp. 331–339. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19823-7_27

    Chapter  Google Scholar 

  7. Guo, J., Wang, Y., Yang, Y., Kang, G.: IEEG-TCN: a concise and robust temporal convolutional network for intracranial electroencephalogram signal identification. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 668–673. IEEE (2021)

    Google Scholar 

  8. Wang, Y., et al.: Computer-aided intracranial EEG signal identification method based on a multi-branch deep learning fusion model and clinical validation. Brain Sci. 11(5), 615 (2021)

    Article  Google Scholar 

  9. Nejedly, P., et al.: Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals. Sci. data 7(1), 179 (2020)

    Article  Google Scholar 

  10. Wang, Y., et al.: SEEG-Net: an explainable and deep learning-based cross-subject pathological activity detection method for drug-resistant epilepsy. Comput. Biol. Med. 148, 105703 (2022)

    Article  Google Scholar 

  11. Jiang, W.B., Yan, X., Zheng, W.L., Lu, B.L.: Elastic graph transformer networks for EEG-based emotion recognition. In: 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE (2023)

    Google Scholar 

  12. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  13. Manzari, O.N., Ahmadabadi, H., Kashiani, H., Shokouhi, S.B., Ayatollahi, A.: MedViT: a robust vision transformer for generalized medical image classification. Comput. Biol. Med. 157, 106791 (2023)

    Article  Google Scholar 

  14. Sun, Y.: Continuous seizure detection based on transformer and long-term iEEG. IEEE J. Biomed. Health Inform. 26(11), 5418–5427 (2022)

    Article  Google Scholar 

  15. Xu, M., Zhou, W., Shen, X., Wang, Y., Mo, L., Qiu, J.: Swin-TCNet: swin-based temporal-channel cascade network for motor imagery iEEG signal recognition. Biomed. Signal Process. Control 85, 104885 (2023)

    Article  Google Scholar 

  16. Peh, W.Y., Thangavel, P., Yao, Y., Thomas, J., Tan, Y.L., Dauwels, J.: Multi-center assessment of CNN-transformer with belief matching loss for patient-independent seizure detection in scalp and intracranial EEG. arXiv preprint arXiv:2208.00025 (2022)

  17. Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhu, X., Li, L., Liu, J., Peng, H., Niu, X.: Captioning transformer with stacked attention modules. Appl. Sci. 8(5), 739 (2018)

    Article  Google Scholar 

  19. Eldele, E., et al.: An attention-based deep learning approach for sleep stage classification with single-channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 809–818 (2021)

    Article  Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations (ICLR 2015). Computational and Biological Learning Society (2015)

    Google Scholar 

  21. Van Den Oord, A., et al.: WaveNet: a generative model for raw audio. In: 9th ISCA Speech Synthesis Workshop, pp. 125–125 (2016)

    Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  23. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  24. Bandos, A.I., Rockette, H.E., Song, T., Gur, D.: Area under the free-response ROC curve (FROC) and a related summary index. Biometrics 65(1), 247–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements.

This work is supported by the Natural Science Foundation of Shandong Province, China, under Grant ZR2019MF071, and the Project of Shandong Province Higher Educational Science and Technology Program, China, under Grant J16LN05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, M., Zhang, Y., Liu, H., Wu, X., Du, M., Liu, X. (2024). IEEG-CT: A CNN and Transformer Based Method for Intracranial EEG Signal Classification. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14449. Springer, Singapore. https://doi.org/10.1007/978-981-99-8067-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8067-3_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8066-6

  • Online ISBN: 978-981-99-8067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics