[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Pupillary Signs

  • Chapter
  • First Online:
Ophthalmic Signs in Practice of Medicine
  • 472 Accesses

Abstract

Pupillary reflexes are most widely used in ophthalmology, neurology, anesthesiology, emergency rooms, and psychology clinics. Pupil reflexes have been used for nearly 200 years to evaluate visual pathways and intracranial pathology. The recent discovery of intrinsic photosensitive retinal ganglion cells has led to a better understanding of pupil light reflexes and their role in circadian rhythm and higher functions. The pupil light reflex tests the integrity of visual pathways’ non-visual (non-image forming) tasks. Pupil reactions have been an integral part of the neurosurgical evaluation of patients in coma due to traumatic brain injuries, infections, or intracranial space-occupying lesions. Since the availability of infrared pupilometers in the last 30 years, objective pupillometry has become an integral tool in intensive care units for the hour-to-hour evaluation of comatose patients. The dilated pupil is a surrogate for dangerously high intracranial pressure and is used to prognosticate outcomes of patients admitted to intensive care units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flügel-Koch CM, Tektas OY, Kaufman PL, Paulsen FP, Lütjen-Drecoll E. Morphological alterations within the peripheral fixation of the iris dilator muscle in eyes with pigmentary glaucoma. Invest Ophthalmol Vis Sci. 2014;55(7):4541–51. https://doi.org/10.1167/iovs.13-13765. PMID: 24938519; PMCID: PMC4453212.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Perez GM, Keyser RB. Cell body counts in human ciliary ganglia. Invest Ophthalmol Vis Sci. 1986;27(9):1428–31. PMID: 3744735.

    CAS  PubMed  Google Scholar 

  3. Turnbull PR, Irani N, Lim N, Phillips JR. Origins of pupillary hippus in the autonomic nervous system. Invest Ophthalmol Vis Sci. 2017;58(1):197–203. https://doi.org/10.1167/iovs.16-20785. PMID: 28114580.

    Article  PubMed  Google Scholar 

  4. Fernández-Torre JL, Paramio-Paz A, Lorda-de Los Ríos I, Martín-García M, Hernández-Hernández MA. Pupillary hippus as clinical manifestation of refractory autonomic nonconvulsive status epilepticus: pathophysiological implications. Seizure. 2018;63:102–4. https://doi.org/10.1016/j.seizure.2018.11.006. Epub 2018 Nov 15. PMID: 30527343.

    Article  PubMed  Google Scholar 

  5. Denny JC, Arndt FV, Dupont WD, Neilson EG. Increased hospital mortality in patients with bedside hippus. Am J Med. 2008;121(3):239–45. https://doi.org/10.1016/j.amjmed.2007.09.014. PMID: 18328309.

    Article  PubMed  Google Scholar 

  6. Esquiva G, Lax P, Pérez-Santonja JJ, García-Fernández JM, Cuenca N. Loss of melanopsin-expressing ganglion cell subtypes and dendritic degeneration in the aging human retina. Front Aging Neurosci. 2017;9:79. https://doi.org/10.3389/fnagi.2017.00079. PMID: 28420980; PMCID: PMC5378720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. La Morgia C, Ross-Cisneros FN, Sadun AA, Carelli V. Retinal ganglion cells and circadian rhythms in Alzheimer’s disease, Parkinson’s disease, and beyond. Front Neurol. 2017;8:162. https://doi.org/10.3389/fneur.2017.00162. PMID: 28522986; PMCID: PMC5415575.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hannibal J, Christiansen AT, Heegaard S, Fahrenkrug J, Kiilgaard JF. Melanopsin expressing human retinal ganglion cells: subtypes, distribution, and intraretinal connectivity. J Comp Neurol. 2017;525(8):1934–61. https://doi.org/10.1002/cne.24181. Epub 2017 Mar 10. PMID: 28160289.

    Article  CAS  PubMed  Google Scholar 

  9. Hannibal J, Hindersson P, Ostergaard J, Georg B, Heegaard S, Larsen PJ, Fahrenkrug J. Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. Invest Ophthalmol Vis Sci. 2004;45(11):4202–9. https://doi.org/10.1167/iovs.04-0313. PMID: 15505076.

    Article  PubMed  Google Scholar 

  10. La Morgia C, Ross-Cisneros FN, Hannibal J, Montagna P, Sadun AA, Carelli V. Melanopsin-expressing retinal ganglion cells: implications for human diseases. Vis Res. 2011;51(2):296–302. https://doi.org/10.1016/j.visres.2010.07.023. Epub 2010 Aug 4. PMID: 20691201.

    Article  CAS  PubMed  Google Scholar 

  11. Mure LS. Intrinsically photosensitive retinal ganglion cells of the human retina. Front Neurol. 2021;12:636330. https://doi.org/10.3389/fneur.2021.636330. PMID: 33841306; PMCID: PMC8027232.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Meltzer E, Sguigna PV, Subei A, Beh S, Kildebeck E, Conger D, Conger A, Lucero M, Frohman BS, Frohman AN, Saidha S, Galetta S, Calabresi PA, Rennaker R, Frohman TC, Kardon RH, Balcer LJ, Frohman EM. Retinal architecture and Melanopsin-mediated pupillary response characteristics: a putative pathophysiologic signature for the Retino-hypothalamic tract in multiple sclerosis. JAMA Neurol. 2017;74(5):574–82. https://doi.org/10.1001/jamaneurol.2016.5131. PMID: 28135360; PMCID: PMC5822208.

    Article  PubMed  PubMed Central  Google Scholar 

  13. White OB, Costello F. Melanopsin effects on pupil responses: is the eye the window to the weary soul? JAMA Neurol. 2017;74(5):506–8. https://doi.org/10.1001/jamaneurol.2016.5385. PMID: 28135345.

    Article  PubMed  Google Scholar 

  14. Kerr RW, Brown JA. Pupillomotor pathways in the spinal cord. Arch Neurol. 1964;10:262–70. https://doi.org/10.1001/archneur.1964.00460150032003. PMID: 14106982.

    Article  CAS  PubMed  Google Scholar 

  15. Lykstad J, Reddy V, Hanna A. Neuroanatomy, pupillary dilation pathway. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. [Updated 2022 Aug 8]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK535421/.

    Google Scholar 

  16. Al-Obaidi S, Atem F, Stutzman SE, Aiyagari V, Olson DM. Investigating the association between eye colour and the neurological pupil index. Aust Crit Care. 2020;33(5):436–40. https://doi.org/10.1016/j.aucc.2019.10.001. Epub 2019 Nov 20. PMID: 31759859.

    Article  PubMed  Google Scholar 

  17. Carter BG, Butt W, Taylor A. Bilaterally absent pupillary responses: not always a bad sign. Anaesth Intensive Care. 2007;35(6):984–7. https://doi.org/10.1177/0310057X0703500623. PMID: 18084996.

    Article  CAS  PubMed  Google Scholar 

  18. Robinson J, Fielder AR. Pupillary diameter and reaction to light in preterm neonates. Arch Dis Child. 1990;65(1 Spec No):35–8. https://doi.org/10.1136/adc.65.1_spec_no.35. PMID: 2306132; PMCID: PMC1590160.

  19. Levatin P. Pupillary escape in disease of the retina or optic nerve. Arch Ophthalmol. 1959;62:768–79. https://doi.org/10.1001/archopht.1959.04220050030005. PMID: 14416133.

    Article  CAS  PubMed  Google Scholar 

  20. Thompson HS, Corbett JJ, Cox TA. How to measure the relative afferent pupillary defect. Surv Ophthalmol. 1981;26(1):39–42. https://doi.org/10.1016/0039-6257(81)90124-7. PMID: 7280994.

    Article  CAS  PubMed  Google Scholar 

  21. Bell RA, Waggoner PM, Boyd WM, Akers RE, Yee CE. Clinical grading of relative afferent pupillary defects. Arch Ophthalmol. 1993;111(7):938–42. https://doi.org/10.1001/archopht.1993.01090070056019. PMID: 8328935.

    Article  CAS  PubMed  Google Scholar 

  22. Hall CA, Chilcott RP. Eyeing up the future of the pupillary light reflex in neurodiagnostics. Diagnostics (Basel). 2018;8(1):19. https://doi.org/10.3390/diagnostics8010019. PMID: 29534018; PMCID: PMC5872002.

    Article  CAS  PubMed  Google Scholar 

  23. Wilhelm H. Neuro-ophthalmology of pupillary function—practical guidelines. J Neurol. 1998;245(9):573–83. https://doi.org/10.1007/s004150050248. PMID: 9758294.

    Article  CAS  PubMed  Google Scholar 

  24. Girkin CA, Perry JD, Miller NR. A relative afferent pupillary defect without any visual sensory deficit. Arch Ophthalmol. 1998;116(11):1544–5. https://doi.org/10.1001/archopht.116.11.1544. PMID: 9823369.

    Article  CAS  PubMed  Google Scholar 

  25. Kawasaki A. Physiology, assessment, and pupil disorders. Curr Opin Ophthalmol. 1999;10(6):394–400. https://doi.org/10.1097/00055735-199912000-00005. PMID: 10662243.

    Article  CAS  PubMed  Google Scholar 

  26. Savino PJ, Paris M, Schatz NJ, Orr LS, Corbett JJ. Optic tract syndrome. A review of 21 patients. Arch Ophthalmol. 1978;96(4):656–63. https://doi.org/10.1001/archopht.1978.03910050352011. PMID: 646693.

    Article  CAS  PubMed  Google Scholar 

  27. Lee AG, Taber KH, Hayman LA, Tang RA. A guide to the isolated dilated pupil. Arch Fam Med. 1997;6(4):385–8. https://doi.org/10.1001/archfami.6.4.385. PMID: 9225713.

    Article  CAS  PubMed  Google Scholar 

  28. Kardon RH, Corbett JJ, Thompson HS. Segmental denervation and reinnervation of the iris sphincter as shown by infrared videographic transillumination. Ophthalmology. 1998;105(2):313–21. https://doi.org/10.1016/s0161-6420(98)93328-0. PMID: 9479293.

    Article  CAS  PubMed  Google Scholar 

  29. Yoo YJ, Hwang JM, Yang HK. Dilute pilocarpine test for diagnosis of Adie’s tonic pupil. Sci Rep. 2021;11(1):10089. https://doi.org/10.1038/s41598-021-89148-w. PMID: 33980910; PMCID: PMC8115311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Woods D, O’Connor PS, Fleming R. Episodic unilateral mydriasis and migraine. Am J Ophthalmol. 1984;98(2):229–34. https://doi.org/10.1016/0002-9394(87)90359-x. PMID: 6476048.

    Article  CAS  PubMed  Google Scholar 

  31. Poole CJ. Argyll Robertson pupils due to neurosarcoidosis: evidence for site of lesion. Br Med J (Clin Res Ed). 1984;289(6441):356. https://doi.org/10.1136/bmj.289.6441.356. PMID: 6432097; PMCID: PMC1442382.

    Article  CAS  PubMed  Google Scholar 

  32. Dacso CC, Bortz DL. Significance of the Argyll Robertson pupil in clinical medicine. Am J Med. 1989;86(2):199–202. https://doi.org/10.1016/0002-9343(89)90269-6. PMID: 2643871.

    Article  CAS  PubMed  Google Scholar 

  33. Clark A, Clarke TN, Gregson B, Hooker PN, Chambers IR. Variability in pupil size estimation. Emerg Med J. 2006;23(6):440–1. https://doi.org/10.1136/emj.2005.030247. PMID: 16714502; PMCID: PMC2564337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kerr RG, Bacon AM, Baker LL, Gehrke JS, Hahn KD, Lillegraven CL, Renner CH, Spilman SK. Underestimation of pupil size by critical care and neurosurgical nurses. Am J Crit Care. 2016;25(3):213–9. https://doi.org/10.4037/ajcc2016554. PMID: 27134226.

    Article  PubMed  Google Scholar 

  35. Marshall M, Deo R, Childs C, Ali A. Feasibility and variability of automated pupillometry among stroke patients and healthy participants: potential implications for clinical practice. J Neurosci Nurs. 2019;51(2):84–8. https://doi.org/10.1097/JNN.0000000000000416. PMID: 30489422.

    Article  PubMed  Google Scholar 

  36. Zafar SF, Suarez JI. Automated pupillometer for monitoring the critically ill patient: a critical appraisal. J Crit Care. 2014;29(4):599–603. https://doi.org/10.1016/j.jcrc.2014.01.012. Epub 2014 Jan 29. PMID: 24613394.

    Article  PubMed  Google Scholar 

  37. Smith J, Flower O, Tracey A, Johnson P. A comparison of manual pupil examination versus an automated pupillometer in a specialised neurosciences intensive care unit. Aust Crit Care. 2020;33(2):162–6. https://doi.org/10.1016/j.aucc.2019.04.005. Epub 2019 May 31. PMID: 31160216.

    Article  PubMed  Google Scholar 

  38. Fountas KN, Kapsalaki EZ, Machinis TG, Boev AN, Robinson JS, Troup EC. Clinical implications of quantitative infrared pupillometry in neurosurgical patients. Neurocrit Care. 2006;5(1):55–60. https://doi.org/10.1385/NCC:5:1:55. PMID: 16960298.

    Article  PubMed  Google Scholar 

  39. Meeker M, Du R, Bacchetti P, Privitera CM, Larson MD, Holland MC, Manley G. Pupil examination: validity and clinical utility of an automated pupillometer. J Neurosci Nurs. 2005 Feb;37(1):34–40.

    Article  PubMed  Google Scholar 

  40. Taylor WR, Chen JW, Meltzer H, Gennarelli TA, Kelbch C, Knowlton S, Richardson J, Lutch MJ, Farin A, Hults KN, Marshall LF. Quantitative pupillometry, a new technology: normative data and preliminary observations in patients with acute head injury. Technical note. J Neurosurg. 2003;98(1):205–13. https://doi.org/10.3171/jns.2003.98.1.0205. PMID: 12546375.

    Article  PubMed  Google Scholar 

  41. Brown JT, Connelly M, Nickols C, Neville KA. Developmental changes of normal pupil size and reactivity in children. J Pediatr Ophthalmol Strabismus. 2015;52(3):147–51. https://doi.org/10.3928/01913913-20150317-11. PMID: 26225382.

    Article  PubMed  Google Scholar 

  42. Chen JW, Vakil-Gilani K, Williamson KL, Cecil S. Infrared pupillometry, the Neurological Pupil index and unilateral pupillary dilation after traumatic brain injury: implications for treatment paradigms. Springerplus. 2014;3:548. https://doi.org/10.1186/2193-1801-3-548. PMID: 25332854; PMCID: PMC4190183.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, Kudenchuk PJ, Kurz MC, Lavonas EJ, Morley PT, O'Neil BJ, Peberdy MA, Rittenberger JC, Rodriguez AJ, Sawyer KN, Berg KM. Adult basic and advanced life support writing group. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142(16_suppl_2):S366–468. https://doi.org/10.1161/CIR.0000000000000916. Epub 2020 Oct 21. PMID: 33081529.

    Article  PubMed  Google Scholar 

  44. Kramer CL, Rabinstein AA, Wijdicks EF, Hocker SE. Neurologist versus machine: is the pupillometer better than the naked eye in detecting pupillary reactivity. Neurocrit Care. 2014;21(2):309–11. https://doi.org/10.1007/s12028-014-9988-5. PMID: 24865269.

    Article  PubMed  Google Scholar 

  45. Yoo YJ, Hwang JM, Yang HK. Differences in pupillary light reflex between optic neuritis and ischemic optic neuropathy. PLoS One. 2017;12(10):e0186741. https://doi.org/10.1371/journal.pone.0186741. PMID: 29049405; PMCID: PMC5648212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilson MH, Edsell M, Imray C, Wright A, Birmingham Medical Research Expeditionary Society. Changes in pupil dynamics at high altitude—an observational study using a handheld pupillometer. High Alt Med Biol. 2008;9(4):319–25. https://doi.org/10.1089/ham.2008.1026. PMID: 19115917.

    Article  PubMed  Google Scholar 

  47. Shirah BH, Sen J, Naaman NK, Pandya S. Automated pupillometry in space neuroscience. Life Sci Space Res. 2023;37:1–2. https://doi.org/10.1016/j.lssr.2023.01.004.

    Article  Google Scholar 

  48. Jennett B, Teasdale G. Aspects of coma after severe head injury. Lancet. 1977;1(8017):878–81. https://doi.org/10.1016/s0140-6736(77)91201-6. PMID: 67287.

    Article  CAS  PubMed  Google Scholar 

  49. Privitera CM, Neerukonda SV, Aiyagari V, Yokobori S, Puccio AM, Schneider NJ, Stutzman SE, Olson DM, END PANIC Investigators. A differential of the left eye and right eye neurological pupil index is associated with discharge modified Rankin scores in neurologically injured patients. BMC Neurol. 2022;22(1):273. https://doi.org/10.1186/s12883-022-02801-3. PMID: 35869429; PMCID: PMC9306158.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lieberman JD, Pasquale MD, Garcia R, Cipolle MD, Mark Li P, Wasser TE. Use of admission Glasgow Coma Score, pupil size, and pupil reactivity to determine outcome for trauma patients. J Trauma. 2003;55(3):437–42; discussion 442-3. https://doi.org/10.1097/01.TA.0000081882.79587.17. PMID: 14501883.

    Article  PubMed  Google Scholar 

  51. Freeman AD, McCracken CE, Stockwell JA. Automated pupillary measurements inversely correlate with increased intracranial pressure in pediatric patients with acute brain injury or encephalopathy. Pediatr Crit Care Med. 2020;21(8):753–9. https://doi.org/10.1097/PCC.0000000000002327. PMID: 32195898.

    Article  PubMed  Google Scholar 

  52. Kivlin JD, Simons KB, Lazoritz S, Ruttum MS. Shaken baby syndrome. Ophthalmology. 2000;107(7):1246–54. https://doi.org/10.1016/s0161-6420(00)00161-5. PMID: 10889093.

    Article  CAS  PubMed  Google Scholar 

  53. Farraj Y, Buxboim A, Cohen JE, Kan-Tor Y, Glasner Hagege S, Weiss D, Goldman V, Beatus T. Measuring pupil size and light response through closed eyelids. Biomed Opt Express. 2021;12(10):6485–95. https://doi.org/10.1364/BOE.435508. PMID: 34745751; PMCID: PMC8548001.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fisher CM. Brain herniation: a revision of classical concepts. Can J Neurol Sci. 1995;22(2):83–91. https://doi.org/10.1017/s0317167100040142. PMID: 7627921.

    Article  CAS  PubMed  Google Scholar 

  55. Ritter AM, Muizelaar JP, Barnes T, Choi S, Fatouros P, Ward J, Bullock MR. Brain stem blood flow, pupillary response, and outcome in patients with severe head injuries. Neurosurgery. 1999;44(5):941–8. https://doi.org/10.1097/00006123-199905000-00005. PMID: 10232526.

    Article  CAS  PubMed  Google Scholar 

  56. Griepp DW, Miller A, Sorek S, Rahme R. Are bilaterally fixed and dilated pupils the kiss of death in patients with transtentorial herniation? Systematic review and pooled analysis. World Neurosurg. 2022;164:e427–35. https://doi.org/10.1016/j.wneu.2022.04.118. Epub 2022 May 2. PMID: 35513282.

    Article  PubMed  Google Scholar 

  57. Feroze KB, Patel BC. Parinaud syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019. [Updated 2019 Jan 13]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441892/.

    Google Scholar 

  58. Maloney WF, Younge BR, Moyer NJ. Evaluation of the causes and accuracy of pharmacologic localization in Horner’s syndrome. Am J Ophthalmol. 1980;90(3):394–402. https://doi.org/10.1016/s0002-9394(14)74924-4. PMID: 7425056.

    Article  CAS  PubMed  Google Scholar 

  59. Sabbagh MA, De Lott LB, Trobe JD. Causes of Horner syndrome: a study of 318 patients. J Neuroophthalmol. 2020;40(3):362–9. https://doi.org/10.1097/WNO.0000000000000844. PMID: 31609831; PMCID: PMC7148177.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Leavitt JA, Wayman LL, Hodge DO, Brubaker RF. Pupillary response to four concentrations of pilocarpine in normal subjects: application to testing for Adie tonic pupil. Am J Ophthalmol. 2002;133(3):333–6. https://doi.org/10.1016/s0002-9394(01)01420-9. PMID: 11860969.

    Article  CAS  PubMed  Google Scholar 

  61. Kotani J, Nakao H, Yamada I, Miyawaki A, Mambo N, Ono Y. A novel method for measuring the pupil diameter and pupillary light reflex of healthy volunteers and patients with intracranial lesions using a newly developed Pupilometer. Front Med (Lausanne). 2021;8:598791. https://doi.org/10.3389/fmed.2021.598791. PMID: 34557496; PMCID: PMC8452878.

    Article  PubMed  Google Scholar 

  62. Chopra R, Mulholland PJ, Petzold A, Ogunbowale L, Gazzard G, Bremner FD, Anderson RS, Keane PA. Automated pupillometry using a prototype binocular optical coherence tomography system. Am J Ophthalmol. 2020;214:21–31. https://doi.org/10.1016/j.ajo.2020.02.013. Epub 2020 Feb 28. PMID: 32114180.

    Article  PubMed  Google Scholar 

  63. Fliegert F, Kurth B, Göhler K. The effects of tramadol on static and dynamic pupillometry in healthy subjects—the relationship between pharmacodynamics, pharmacokinetics and CYP2D6 metaboliser status. Eur J Clin Pharmacol. 2005;61(4):257–66. https://doi.org/10.1007/s00228-005-0920-y. Epub 2005 May 20. PMID: 15906019.

    Article  CAS  PubMed  Google Scholar 

  64. Gray AT, Krejci ST, Larson MD. Neuromuscular blocking drugs do not alter the pupillary light reflex of anesthetized humans. Arch Neurol. 1997;54(5):579–84. https://doi.org/10.1001/archneur.1997.00550170055014. PMID: 9152114.

    Article  CAS  PubMed  Google Scholar 

  65. Jolkovsky EL, Fernandez-Penny FE, Alexis M, Benson LN, Wang BH, Abella BS. Impact of acute intoxication on quantitative pupillometry assessment in the emergency department. J Am Coll Emerg Physicians Open. 2022;3(5):e12825. https://doi.org/10.1002/emp2.12825. PMID: 36311337; PMCID: PMC9601771.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Franzen PL, Buysse DJ, Dahl RE, Thompson W, Siegle GJ. Sleep deprivation alters pupillary reactivity to emotional stimuli in healthy young adults. Biol Psychol. 2009;80(3):300–5. https://doi.org/10.1016/j.biopsycho.2008.10.010. Epub 2008 Nov 11. PMID: 19041689; PMCID: PMC3107827.

    Article  PubMed  Google Scholar 

  67. Siegle GJ, Steinhauer SR, Stenger VA, Konecky R, Carter CS. Use of concurrent pupil dilation assessment to inform interpretation and analysis of fMRI data. NeuroImage. 2003;20(1):114–24. https://doi.org/10.1016/s1053-8119(03)00298-2. PMID: 14527574.

    Article  PubMed  Google Scholar 

  68. Urry HL, van Reekum CM, Johnstone T, Kalin NH, Thurow ME, Schaefer HS, Jackson CA, Frye CJ, Greischar LL, Alexander AL, Davidson RJ. Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. J Neurosci. 2006;26(16):4415–25. https://doi.org/10.1523/JNEUROSCI.3215-05.2006. PMID: 16624961; PMCID: PMC6673990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kang OE, Huffer KE, Wheatley TP. Pupil dilation dynamics track attention to high-level information. PLoS One. 2014;9(8):e102463. https://doi.org/10.1371/journal.pone.0102463. PMID: 25162597; PMCID: PMC4146469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Van Gerven PW, Paas F, Van Merriënboer JJ, Schmidt HG. Memory load and the cognitive pupillary response in aging. Psychophysiology. 2004;41(2):167–74. https://doi.org/10.1111/j.1469-8986.2003.00148.x. PMID: 15032982.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Bansal, R., Sharma, A., Kapil, A. (2023). Pupillary Signs. In: Ophthalmic Signs in Practice of Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-99-7923-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7923-3_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7922-6

  • Online ISBN: 978-981-99-7923-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics