[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Autofocusing for Cleavage-stage Embryos in Brightfield Microscopy: Towards Automated Preimplantation Genetic Testing

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14269))

Included in the following conference series:

  • 830 Accesses

Abstract

Autofocusing is essential and serves as a prerequisite for the automation of embryo biopsy in preimplantation genetic testing (PGT) using robotics. Despite the existence of numerous autofocus algorithms, achieving accurate autofocusing for cleavage-stage embryos in brightfield microscopy remains challenging due to their non-unimodal nature. Thus, an adaptive and robust autofocusing method is required. This paper presents an autofocusing method based on an adaptive focus measure. The proposed method employs an adaptive focus measure selection approach and incorporates a coarse-to-fine strategy for autofocusing cleavage-stage embryos in brightfield microscopy. Experimental results demonstrate that the proposed autofocusing method achieves superior performance compared to other regular autofocus algorithms in brightfield microscopy for cleavage-stage embryos. This advancement marks a significant step forward in the automation development of PGT.

S. Yao and K. Wu—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brezina, P.R., Brezina, D.S., Kearns, W.G.: Preimplantation genetic testing. BMJ 345, e5908 (2012). https://doi.org/10.1136/bmj.e5908

    Article  Google Scholar 

  2. Kang, H.-J., Melnick, A.P., Stewart, J.D., Xu, K., Rosenwaks, Z.: Preimplantation genetic screening: who benefits? Fertil. Steril. 106(3), 597–602 (2016). https://doi.org/10.1016/j.fertnstert.2016.04.027

    Article  Google Scholar 

  3. Won, S.Y., Kim, H., Lee, W.S., Kim, J.W., Shim, S.H.: Pre-implantation genetic diagnosis and pre-implantation genetic screening: two years experience at a single center. Obstet. Gynecol. Sci. 61(1), 95–101 (2018). https://doi.org/10.5468/ogs.2018.61.1.95

    Article  Google Scholar 

  4. Liu, X., Lu, Z., Sun, Y.: Orientation control of biological cells under inverted microscopy. IEEE/ASME Trans. Mechatron. 16(5), 918–924 (2011). https://doi.org/10.1109/TMECH.2010.2056380

    Article  Google Scholar 

  5. Zhao, X., Cui, M., Zhang, Y., Liu, Y., Zhao, X.: Robotic precisely oocyte blind enucleation method. Appl. Sci. 11(4), 1850 (2021). https://doi.org/10.3390/app11041850

    Article  Google Scholar 

  6. Wei, Y., Xu, Q.: A survey of force-assisted robotic cell microinjection technologies. IEEE Trans. Autom. Sci. Eng. 16(2), 931–945 (2019). https://doi.org/10.1109/TASE.2018.2878867

    Article  Google Scholar 

  7. Shan, G., et al.: 3D morphology measurement for blastocyst evaluation from ‘all angles’. IEEE Trans. Biomed. Eng. 1–10 (2022). https://doi.org/10.1109/TBME.2022.3232068

  8. Yao, S., Li, H., Pang, S., Zhu, B., Zhang, X., Fatikow, S.: A review of computer microvision-based precision motion measurement: principles, characteristics, and applications. IEEE Trans. Instrum. Meas. 70, 1–28 (2021). https://doi.org/10.1109/TIM.2021.3065436

    Article  Google Scholar 

  9. Zhang, Z., Wang, X., Liu, J., Dai, C., Sun, Y.: Robotic micromanipulation: fundamentals and applications. Annu. Rev. Control Robot. Auton. Syst. 2(1), 181–203 (2019). https://doi.org/10.1146/annurev-control-053018-023755

    Article  Google Scholar 

  10. Sun, Y., Duthaler, S., Nelson, B.J.: Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microsc. Res. Tech. 65(3), 139–149 (2004). https://doi.org/10.1002/jemt.20118

    Article  Google Scholar 

  11. Yu, M.Y., Han, M.L., Shee, C.Y., Ang, W.T.: Autofocusing algorithm comparison in bright field microscopy for automatic vision aided cell micromanipulation. In: 2010 IEEE International Conference on Nano/Molecular Medicine and Engineering, Hung Hom, China, pp. 88–92. IEEE (2010). https://doi.org/10.1109/NANOMED.2010.5749811

  12. Pertuz, S., Puig, D., Garcia, M.A.: Analysis of focus measure operators for shape-from-focus. Pattern Recogn. 46(5), 1415–1432 (2013). https://doi.org/10.1016/j.patcog.2012.11.011

    Article  MATH  Google Scholar 

  13. Su, L., et al.: Macro-to-micro positioning and auto focusing for fully automated single cell microinjection. Microsyst. Technol. 27(1), 11–21 (2021). https://doi.org/10.1007/s00542-020-04891-w

    Article  Google Scholar 

  14. Wang, Z., Feng, C., Ang, W.T., Tan, S.Y.M., Latt, W.T.: Autofocusing and polar body detection in automated cell manipulation. IEEE Trans. Biomed. Eng. 64(5), 1099–1105 (2017). https://doi.org/10.1109/TBME.2016.2590995

    Article  Google Scholar 

  15. Luo, Y., Huang, L., Rivenson, Y., Ozcan, A.: Single-shot autofocusing of microscopy images using deep learning. ACS Photon. 8(2), 625–638 (2021). https://doi.org/10.1021/acsphotonics.0c01774

    Article  Google Scholar 

  16. Yao, S., Mills, J.K., Ajamieh, I.A., Li, H., Zhang, X.M.: Automatic three-dimensional imaging for blastomere identification in early-stage embryos based on brightfield microscopy. Opt. Lasers Eng. 130, 106093 (2020). https://doi.org/10.1016/j.optlaseng.2020.106093

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Science and Technology Program of Guangzhou under Grant 2023A04J2039 and National Training Program of Innovation and Entrepreneurship for Undergraduates under Grant 202212121051.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Yang or Qianjin Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, S., Wu, K., Qi, L., Yang, F., Feng, Q. (2023). Autofocusing for Cleavage-stage Embryos in Brightfield Microscopy: Towards Automated Preimplantation Genetic Testing. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14269. Springer, Singapore. https://doi.org/10.1007/978-981-99-6489-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6489-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6488-8

  • Online ISBN: 978-981-99-6489-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics