Abstract
Several approaches have been introduced to solve the problem of high utility pattern mining (HUPM). However, the proposed algorithms require a minimum utility threshold before execution. This task is impractical for end users as they do not know utility distributions in the transaction datasets. The output will contain too many patterns if this value is too low. In contrast, if the threshold is set too high, the result would be empty or insufficient for analysis. Recently, HUPM was extended to work with hierarchical transaction datasets. With the search space of the mining task expanded, selecting a proper threshold is far more challenging. To address this issue, we propose a top-\(k\) high utility pattern mining method from multi-level transactions databases. The users only need to specify a \(k\) value, denotes the desired number of patterns of interest. To the best of our knowledge, the method proposed in our work is the first to address this mining topic. Experiments on both real and synthetic hierarchical datasets were extensively conducted to evaluate the performance of the proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
References
Fournier-Viger, P., Lin, J.C.W., Vo, B., Chi, T.T., Zhang, J., Le, H.B.: A survey of itemset mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 7(4) (2017)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: 20th International Conference on Very Large Data Bases (VLDB’94), Morgan Kaufmann Publishers Inc., pp. 487–499 (1994)
Yao, H., Hamilton, H.J., Butz, G.J.: A foundational approach to mining itemset utilities from databases. In: SIAM International Conference on Data Mining, pp. 482–486 (2004)
Fournier-Viger, P., Lin, J.C.-W., Truong-Chi, T., Nkambou, R.: A survey of high utility itemset mining. In: High-Utility Pattern Mining: Theory, Algorithms and Applications, Fournier-Viger, P., Lin, J.C.-W., Nkambou, R., Vo, B., Tseng, V.S. (eds.), Springer International Publishing, Cham, pp. 1–45 (2019)
Cagliero, L., Chiusano, S., Garza, P., Ricupero, G.: Discovering high-utility itemsets at multiple abstraction levels. In: Kirikova, M., et al. (eds.) European Conference on Advances in Databases and Information Systems, pp. 224–234. Springer International Publishing, Cham (2017)
Nouioua, M., Wang, Y., Fournier-Viger, P., Lin, J.C.-W., Wu, J.M.-T.: TKC: Mining top-k cross-level high utility itemsets. In: 2020 International Conference on Data Mining Workshops (ICDMW), pp. 673–682 (2020)
Tung, N.T., Nguyen, L.T.T., Nguyen, T.D.D., Vo, B.: An efficient method for mining multi-level high utility Itemsets. Appl. Intell. 52(5), 5475–5496 (2022)
Tung, N.T., Nguyen, L.T.T., Nguyen, T.D.D., Fourier-Viger, P., Nguyen, N.T., Vo, B.: Efficient mining of cross-level high-utility itemsets in taxonomy quantitative databases. Inf. Sci. (Ny) 587, 41–62 (2022)
Nguyen, T. D.D., Nguyen, L.T.T., Kozierkiewicz, A., Pham, T., Vo, B.: An efficient approach for mining high-utility itemsets from multiple abstraction levels. In: Intelligent Information and Database Systems., Springer International Publishing, pp. 92–103 (2021). https://doi.org/10.1007/978-3-030-73280-6_8
Baralis, E., Cagliero, L., Cerquitelli, T., D’Elia, V., Garza, P.: Expressive generalized itemsets. Inf. Sci. (Ny) 278, 327–343 (2014)
Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: ACM International Conference Proceeding Series, pp. 55–64 (2012)
Fournier-Viger, P., Wu, C.W., Zida, S., Tseng, V.S.: FHM: Faster high-utility itemset mining using estimated utility co-occurrence pruning. In: International Symposium on Methodologies for Intelligent Systems, pp. 83–92 (2014)
Nguyen, L.T.T., Nguyen, P., Nguyen, T.D.D., Vo, B., Fournier-Viger, P., Tseng, V.S.: Mining high-utility itemsets in dynamic profit databases. Knowledge-Based Syst. 175, 130–144 (2019)
Tseng, V.S., Wu, C.W., Fournier-Viger, P., Yu, P.S.: Efficient algorithms for mining top-K high utility itemsets. IEEE Trans. Knowl. Data Eng. 28(1), 54–67 (2016)
Ryang, H., Yun, U.: Top-k high utility pattern mining with effective threshold raising strategies. Knowledge-Based Syst. 76, 109–126 (2015)
Krishnamoorthy, S.: Mining top-k high utility itemsets with effective threshold raising strategies. Expert Syst. Appl. 117, 148–165 (2019)
Fournier-Viger, P., Yang, Y., Lin, J.C.-W., Luna, J.M., Ventura, S.: Mining cross-level high utility itemsets. In: 33rd International Conference on Industrial, p. 12. Springer, Engineering and Other Applications of Applied Intelligent Systems (2020)
Liu, Y., Liao, W.K., Choudhary, A.: A two-phase algorithm for fast discovery of high utility itemsets. In: 9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, in PAKDD’05, vol. 3518. Springer-Verlag, pp. 689–695 (2005)
Fournier-Viger, P., et al.: The SPMF open-source data mining library version 2. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 36–40 (2016)
Acknowledgment
This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number B2023-28-02.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Le, T.M., Nguyen, T.D.D., Nguyen, L.T.T., Kozierkiewicz, A., Tung, N.T. (2023). Extracting Top-k High Utility Patterns from Multi-level Transaction Databases. In: Nguyen, N.T., et al. Intelligent Information and Database Systems. ACIIDS 2023. Lecture Notes in Computer Science(), vol 13995. Springer, Singapore. https://doi.org/10.1007/978-981-99-5834-4_24
Download citation
DOI: https://doi.org/10.1007/978-981-99-5834-4_24
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-5833-7
Online ISBN: 978-981-99-5834-4
eBook Packages: Computer ScienceComputer Science (R0)