[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

UCM: Personalized Document-Level Sentiment Analysis Based on User Correlation Mining

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14089))

Included in the following conference series:

  • 1315 Accesses

Abstract

Personalized document-level sentiment analysis (PDSA) is important in various fields. Although various deep learning models for PDSA have been proposed, they failed to consider the correlations of rating behaviors between different users. It can be observed that in the real-world users may give different rating scores for the same product, but their rating behaviors tend to be correlated over a range of products. However, mining user correlation is very challenging due to real-world data sparsity, and a model is lacking to utilize user correlation for PDSA so far. To address these issues, we propose an architecture named User Correlation Mining (UCM). Specifically, UCM contains two components, namely Similar User Cluster Module (SUCM) and Triple Attributes BERT Model (TABM). SUCM is responsible for user clustering. It consists of two modules, namely Latent Factor Model based on Neural Network (LFM-NN) and Spectral Clustering based on Pearson Correlation Coefficient (SC-PCC). LFM-NN predicts the missing values of the sparse user-product rating matrix. SC-PCC clusters users with high correlations to get the user cluster IDs. TABM is designed to classify the users’ sentiment based on user cluster IDs, user IDs, product IDs, and user reviews. To evaluate the performance of UCM, extensive experiments are conducted on the three real-world datasets, i.e., IMDB, Yelp13, and Yelp14. The experiment results show that our proposed architecture UCM outperforms other baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications. CRC Press (2014)

    Google Scholar 

  2. Amplayo, R.K.: Rethinking attribute representation and injection for sentiment classification (2019)

    Google Scholar 

  3. Appel, O., Chiclana, F., Carter, J., Fujita, H.: A hybrid approach to the sentiment analysis problem at the sentence level. Knowl.-Based Syst. 108, 110–124 (2016)

    Article  Google Scholar 

  4. Behdenna, S., Barigou, F., Belalem, G.: Document level sentiment analysis: a survey. CASA 4(13) (2018)

    Google Scholar 

  5. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Noise Reduction in Speech Processing, pp. 1–4 (2009)

    Google Scholar 

  6. Chen, H., Sun, M., Tu, C., Lin, Y., Liu, Z.: Neural sentiment classification with user and product attention. In: EMNLP, pp. 1650–1659 (2016)

    Google Scholar 

  7. Chen, T., Xu, R., He, Y., Xia, Y., Wang, X.: Learning user and product distributed representations using a sequence model for sentiment analysis. In: IEEE CIM (2016)

    Google Scholar 

  8. Crisci, A., Grasso, V., Nesi, P., Pantaleo, G., Paoli, I., Zaza, I.: Predicting TV programme audience by using twitter based metrics. Multimedia Tools Appl. 77(10), 12203–12232 (2018)

    Article  Google Scholar 

  9. Denecke, K., Deng, Y.: Sentiment analysis in medical settings: new opportunities and challenges. Artif. Intell. Med. 64(1), 17–27 (2015)

    Article  Google Scholar 

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)

    Google Scholar 

  11. Dolianiti, F.S., Iakovakis, D., Dias, S.B., Hadjileontiadou, S., Diniz, J.A., Hadjileontiadis, L.: Sentiment analysis techniques and applications in education: a survey. In: TECH-EDU, pp. 412–427 (2018)

    Google Scholar 

  12. Dou, Z.Y.: Capturing user and product information for document level sentiment analysis with deep memory network. In: EMNLP, pp. 521–526 (2017)

    Google Scholar 

  13. Du, C.H., Tsai, M.F., Wang, C.J.: Beyond word-level to sentence-level sentiment analysis for financial reports. In: ICASSP, pp. 1562–1566 (2019)

    Google Scholar 

  14. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415 (2016)

  15. Huang, T., Zhang, Z., Zhang, J.: Fibinet: combining feature importance and bilinear feature interaction for click- through rate prediction. In: RecSys, pp. 169–177 (2019)

    Google Scholar 

  16. Kim: Convolutional neural networks for sentence classification. In: EMNLP, pp. 1746–1751 (2014)

    Google Scholar 

  17. Li, G., Hoi, S.C., Chang, K., Jain, R.: Micro-blogging sentiment detection by collaborative online learning. In: ICDM, pp. 893–898 (2010)

    Google Scholar 

  18. Long, Y., Ma, M., Lu, Q., Xiang, R., Huang, C.R.: Dual memory network model for biased product review classification. In: WASSA (2018)

    Google Scholar 

  19. Lucińska, M., Wierzchoń, S.T.: Spectral clustering based on k-Nearest neighbor graph. In: Cortesi, A., Chaki, N., Saeed, K., Wierzchoń, S. (eds.) CISIM 2012. LNCS, vol. 7564, pp. 254–265. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33260-9_22

    Chapter  Google Scholar 

  20. Lyu, C., Ji, T., Graham, Y.: Incorporating context and knowledge for better sentiment analysis of narrative text. In: Text2Story@ECIR, pp. 39–45 (2020)

    Google Scholar 

  21. Ma, D., Li, S., Zhang, X., Wang, H., Sun, X.: Cascading multiway attentions for document-level sentiment classification. In: IJCNLP, pp. 634–643 (2017)

    Google Scholar 

  22. Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)

    Article  Google Scholar 

  23. Mehta, R., Rana, K.: A review on matrix factorization techniques in recommender systems. In: CSCITA. IEEE (2017)

    Google Scholar 

  24. Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: Advances in Neural Information Processing Systems (2007)

    Google Scholar 

  25. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, vol. 14 (2001)

    Google Scholar 

  26. Pappagari, R., Zelasko, P., Villalba, J., Carmiel, Y., Dehak, N.: Hierarchical transformers for long document classification. In: IEEE ASRU (2019)

    Google Scholar 

  27. Pengcheng, Z., Yujiu, Y.: Parallel multi-feature attention on neural sentiment classification. In: SoICT, pp. 181– 188 (2017)

    Google Scholar 

  28. Ren, Z., Zeng, G., Chen, L., Zhang, Q., Zhang, C., Pan, D.: A lexicon-enhanced attention network for aspect-level sentiment analysis. IEEE Access 8, 93464–93471 (2020)

    Article  Google Scholar 

  29. Rhanoui, M., Mikram, M., Yousfi, S., Barzali, S.: A cnn-bilstm model for document-level sentiment analysis. Mach. Learn. Knowl. Extract. 1(3), 832–847 (2019)

    Article  Google Scholar 

  30. Schouten, K., Frasincar, F.: Survey on aspect-level sentiment analysis. IEEE TKDE 28(3), 813–830 (2015)

    Google Scholar 

  31. Seyler, D., Shen, J., Xiao, J., Wang, Y., Zhai, C.: Leveraging personalized sentiment lexicons for sentiment analysis. In: ICTIR, pp. 109–112 (2020)

    Google Scholar 

  32. Shen, J., Liao, X., Tao, Z.: Sentence-level sentiment analysis via BERT and BiGRU. In: 2019 International Conference on Image and Video Processing, and Artificial Intelligence, pp. 658–663 (2019)

    Google Scholar 

  33. Song, K., Feng, S., Gao, W., Wang, D., Yu, G., Wong, K.F.: Personalized sentiment classification based on latent individuality of microblog users. In: IJCAI (2015)

    Google Scholar 

  34. Sun, K., Zhang, R., Mensah, S., Mao, Y., Liu, X.: Aspect-level sentiment analysis via convolution over dependency tree. In: EMNLP-IJCNLP, pp. 5679–5688 (2019)

    Google Scholar 

  35. Tang, D., Qin, B., Liu, T.: Learning semantic representations of users and products for document level sentiment classification. In: ACL-IJCNLP, pp. 1014–1023 (2015)

    Google Scholar 

  36. Wang, P., Li, J., Hou, J.: S2SAN: a sentence-to-sentence attention network for sentiment analysis of online reviews. Decis. Support Syst. 149, 113603 (2021)

    Article  Google Scholar 

  37. Wu, Z., Dai, X.Y., Yin, C., Huang, S., Chen, J.: Improving review representations with user attention and product attention for sentiment classification. In: AAAI (2018)

    Google Scholar 

  38. Yuan, Z., Wu, F., Liu, J., Wu, C., Huang, Y., Xie, X.: Neural review rating prediction with user and product memory. In: CIKM, pp. 2341–2344 (2019)

    Google Scholar 

  39. Zhang, Y., Wang, J., Yu, L.C., Zhang, X.: Ma-bert: Learning representation by incorporating multi-attribute knowledge in transformers. In: ACL-IJCNLP, pp. 2338–2343 (2021)

    Google Scholar 

  40. Zhang, Y., Wang, J., Zhang, X.: Conciseness is better: recurrent attention LSTM model for document-level sentiment analysis. Neurocomputing 462, 101–112 (2021)

    Article  Google Scholar 

  41. Zhou, D., Zhang, M., Zhang, L., He, Y.: A neural group-wise sentiment analysis model with data sparsity aware- ness. In: AAAI, pp. 14594–14601 (2021)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Macao Polytechnic University – Big Data-Driven Intelligent Computing (RP/ESCA-05/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuman Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, J., Yu, Z., Luo, W. (2023). UCM: Personalized Document-Level Sentiment Analysis Based on User Correlation Mining. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science(), vol 14089. Springer, Singapore. https://doi.org/10.1007/978-981-99-4752-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4752-2_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4751-5

  • Online ISBN: 978-981-99-4752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics