[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Quantum Simulation Method with Repeatable Steady-State Output Using Massive Inferior Solutions

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14086))

Included in the following conference series:

  • 1452 Accesses

Abstract

In evolutionary computation, inferior solutions are often discarded to expedite convergence, potentially bypassing valuable optimization insights. To rectify this, we have developed a novel method, drawing inspiration from ground state evolution (GSE) and quantum annealing (QA). These processes retain numerous positions with non-minimum potential energy, enabling the construction of the lowest possible energy wave function. Our method’s theoretical foundation is meticulously explained through the quantum path integral. We have realized this theory via numerical simulation, utilizing population-based evolution driven by multi-scale Gaussian sampling with a decreasing scale, mimicking QA with multi-scale diffusion Monte Carlo (DMC). A series of rigorous experiments highlight the unique attributes and effectiveness of this method. Importantly, our approach generates a vast array of inferior solutions consistently. Their distribution indicates regions of lower function values within the solution space, presenting a new perspective on the utilization of inferior solutions. The implications of this research promise enhancements in solving optimization problems, potentially improving efficiency in evolutionary computation and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin, J., Wang, P.: Multiscale quantum harmonic oscillator algorithm with guiding information for single objective optimization. Swarm Evol. Comput. 65, 100916 (2021)

    Article  Google Scholar 

  2. Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., Schmidhuber, J.: Natural evolution strategies. The J. Mach. Learn. Res. 15(1), 949–980 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Li, J.Z., Zheng, S.Q., Tan, Y.: The effect of information utilization: introducing a novel guiding spark in the fireworks algorithm. IEEE Trans. Evol. Comput. 21(1), 153–166 (2016)

    Article  Google Scholar 

  4. Simoncini, D., Verel, S., Collard, P., Clergue, M.: Centric selection: a way to tune the exploration/exploitation trade-off. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 891–898 (2009)

    Google Scholar 

  5. Tanabe, R.: Towards exploratory landscape analysis for large-scale optimization: a dimensionality reduction framework. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 546–555 (2021)

    Google Scholar 

  6. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)

    Article  Google Scholar 

  7. McMahon, P.L., et al.: A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354(6312), 614–617 (2016)

    Article  MathSciNet  Google Scholar 

  8. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355 (1998)

    Article  Google Scholar 

  9. Finnila, A.B., Gomez, M.A., Sebenik, C., Stenson, C., Doll, J.D.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219(5–6), 343–348 (1994)

    Article  Google Scholar 

  10. Kosztin, I., Faber, B., Schulten, K.: Introduction to the diffusion Monte Carlo method. Am. J. Phys. 64(5), 633–644 (1996)

    Article  Google Scholar 

  11. Blinder, S.M., House, J.E.: Mathematical physics in theoretical chemistry. Elsevier (2018)

    Google Scholar 

  12. Wick, G.C.: Properties of Bethe-Salpeter wave functions. Phys. Rev. 96(4), 1124 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ceperley, D., Alder, B.: Quantum Monte Carlo. Science 231(4738), 555–560 (1986)

    Article  Google Scholar 

  14. Anderson, J.B.: A random-walk simulation of the Schrödinger equation: H3+. J. Chem. Phys. 63(4), 1499–1503 (1975)

    Article  Google Scholar 

  15. Feynman, R.P., Hibbs, A.R., Styer, D.F.: Quantum mechanics and path integrals: Emended edition. Dover Publications (2005)

    Google Scholar 

  16. Thijssen, J.: Computational physics. Cambridge University Press (2007)

    Google Scholar 

  17. Edward, F., Jeffrey, G., Sam, G., Joshua, L., Andrew, L., Daniel, P.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, Y.Y, Fu, Z.H: Survey of adiabatic quantum optimization algorithms. Comput. Eng. Sci. 37(3), 429–433 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, G., Wang, P., Xin, G., Yin, X. (2023). A Quantum Simulation Method with Repeatable Steady-State Output Using Massive Inferior Solutions. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14086. Springer, Singapore. https://doi.org/10.1007/978-981-99-4755-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4755-3_58

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4754-6

  • Online ISBN: 978-981-99-4755-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics