Abstract
In evolutionary computation, inferior solutions are often discarded to expedite convergence, potentially bypassing valuable optimization insights. To rectify this, we have developed a novel method, drawing inspiration from ground state evolution (GSE) and quantum annealing (QA). These processes retain numerous positions with non-minimum potential energy, enabling the construction of the lowest possible energy wave function. Our method’s theoretical foundation is meticulously explained through the quantum path integral. We have realized this theory via numerical simulation, utilizing population-based evolution driven by multi-scale Gaussian sampling with a decreasing scale, mimicking QA with multi-scale diffusion Monte Carlo (DMC). A series of rigorous experiments highlight the unique attributes and effectiveness of this method. Importantly, our approach generates a vast array of inferior solutions consistently. Their distribution indicates regions of lower function values within the solution space, presenting a new perspective on the utilization of inferior solutions. The implications of this research promise enhancements in solving optimization problems, potentially improving efficiency in evolutionary computation and beyond.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Jin, J., Wang, P.: Multiscale quantum harmonic oscillator algorithm with guiding information for single objective optimization. Swarm Evol. Comput. 65, 100916 (2021)
Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., Schmidhuber, J.: Natural evolution strategies. The J. Mach. Learn. Res. 15(1), 949–980 (2014)
Li, J.Z., Zheng, S.Q., Tan, Y.: The effect of information utilization: introducing a novel guiding spark in the fireworks algorithm. IEEE Trans. Evol. Comput. 21(1), 153–166 (2016)
Simoncini, D., Verel, S., Collard, P., Clergue, M.: Centric selection: a way to tune the exploration/exploitation trade-off. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 891–898 (2009)
Tanabe, R.: Towards exploratory landscape analysis for large-scale optimization: a dimensionality reduction framework. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 546–555 (2021)
Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)
McMahon, P.L., et al.: A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354(6312), 614–617 (2016)
Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355 (1998)
Finnila, A.B., Gomez, M.A., Sebenik, C., Stenson, C., Doll, J.D.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219(5–6), 343–348 (1994)
Kosztin, I., Faber, B., Schulten, K.: Introduction to the diffusion Monte Carlo method. Am. J. Phys. 64(5), 633–644 (1996)
Blinder, S.M., House, J.E.: Mathematical physics in theoretical chemistry. Elsevier (2018)
Wick, G.C.: Properties of Bethe-Salpeter wave functions. Phys. Rev. 96(4), 1124 (1954)
Ceperley, D., Alder, B.: Quantum Monte Carlo. Science 231(4738), 555–560 (1986)
Anderson, J.B.: A random-walk simulation of the Schrödinger equation: H3+. J. Chem. Phys. 63(4), 1499–1503 (1975)
Feynman, R.P., Hibbs, A.R., Styer, D.F.: Quantum mechanics and path integrals: Emended edition. Dover Publications (2005)
Thijssen, J.: Computational physics. Cambridge University Press (2007)
Edward, F., Jeffrey, G., Sam, G., Joshua, L., Andrew, L., Daniel, P.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)
Zhang, Y.Y, Fu, Z.H: Survey of adiabatic quantum optimization algorithms. Comput. Eng. Sci. 37(3), 429–433 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yang, G., Wang, P., Xin, G., Yin, X. (2023). A Quantum Simulation Method with Repeatable Steady-State Output Using Massive Inferior Solutions. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14086. Springer, Singapore. https://doi.org/10.1007/978-981-99-4755-3_58
Download citation
DOI: https://doi.org/10.1007/978-981-99-4755-3_58
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-4754-6
Online ISBN: 978-981-99-4755-3
eBook Packages: Computer ScienceComputer Science (R0)